Ex1: DET and low-depth arithmetic and boolean circuits

1. Prove the Schwartz-Zippel lemma.

If $p: \mathbb{F}^m \to \mathbb{F}$ is a non-zero polynomial of total degree d over a field \mathbb{F} and $\Lambda \subseteq \mathbb{F}$, then $\Pr_{a_1,\ldots,a_m \in \Lambda}[p(a_1,\ldots,a_m)=0] \leq \frac{d}{|\Lambda|}$.

- 2. Shortly outline the proof of each of the following:
 - (a) Addition of two integers represented in binary is in AC^0 ?
 - (b) Addition of *n* integers (*n*-bit each) is in NC^1 ?
 - (c) Multiplication of two integers in NC^1 ?
 - (d) Multiplication of two boolean matrices is in AC^0 ?
- 3. Prove that $NC^k \subseteq SPACE(O(\lg^k n))$. Note the cost of pointers.
- 4. Prove that $NL \subseteq AC^1$. If you use a reduction, carefully note the resources it takes.
- 5. (Ben-Or) Denote $e_d(x_1, \ldots, x_n) = \sum_{S \subseteq [n], |S|=d} \prod_{j \in S} x_j$, $1 \leq d \leq n$. We are going to construct a depth three, polynomial size arithmetic formula for e_d over \mathbb{C} (with addition and multiplication gates of unbounded fan-in). For that:
 - Define $p(t) = p_{x_1,\dots,x_n}(t) = \prod_{i=1}^n (t+x_i)$. p is a degree n polynomial $p(t) = \sum_{i=0}^n a_i t^i$. what are the a_i as functions of x_1,\dots,x_n ?
 - Build the required circuit. Hint: first evaluate p on n points that you choose, then deduce the coefficients of p from the evaluations.
 - Is the family of circuits that you build uniform?
- 6. Show that matrix inversion of *lower triangular* matrix is in SAC^1 .

 SAC^1 : uniform polynomial-size boolean circuits with $O(\log n)$ depth over: unbounded fan-in \lor , bounded fan-in \land and \neg at input level only.

- 7. Show that computing the characteristic polynomial of an arbitrary matrix is in SAC^1 .
- 8. Show that checking the rank of an arbitrary matrix and inverting an invertible matrix are both in SAC¹.