Problem set 11

out: 13/01/15due: 2/2/15

1. Give a log-space algorithm that given an undirected graph G outputs a spanning forest in G.

Notation for the next exercise: A BPL machine has:

- A read-only, multiple access input tape,
- A read/write work tape
- A read-only, read-once random tape
- A write-only output tape.

The space complexity is the maximal size used by the work tape. BPL is the class of languages solved by polynomial time, logarithmic space, bi-sided error probabilistic algorithm with a constant gap between the acceptance probability of yes and no instances. We now define a new class BPL* which is the same except that the random tape (that is initialized uniformly as before) is *multiple access* (but still read only). ZPL* is the same except that it is zero-error meaning that the machine may answer {*yes, no, quit*}, when it answers *yes* or *no* it is correct, and for every input the probability of answering *quit* is at most half.

- 2. (Nisan) Prove that $\mathsf{BPL} \subseteq \mathsf{ZPL}^*$.
- 3. A k-source is a distribution D with $H_{\infty}(D) \ge k$. Prove that if X is ε -far from any k-source, then there exists a subset A of cardinality at most 2^k such that $\Pr_{x \in X}[x \in A] \ge \varepsilon$.

<u>Definition</u>: $S_1, \ldots, S_m \subseteq \{1, \ldots, t\}$ is an (ℓ, a) -design if each set S_i $(1 \le i \le \ell)$ has cardinality ℓ , and every two different sets S_i and S_j in the collection have intersection size $|S_i \cap S_j|$ at most a.

- 4. Prove that for every $\ell, a \ge 1$, there exists an (ℓ, a) design $S_1, \ldots, S_m \subseteq [t]$ with $t = O(\ell^2/a)$ and $m = 2^{\Omega(a)}$.
- 5. Two norm one vectors $v_1, v_2 \in \mathbb{R}^d$ are almost orthogonal if $|\langle v_1 | v_2 \rangle| \leq \varepsilon$.
 - Show how to convert an (ℓ, a) design $S_1, \ldots, S_m \in [t]$ into:
 - A set of *m* nearly orthogonal norm 1 vectors.
 - A binary error correcting code of length t with m codewords and large distance.
 - How many norm 1 orthogonal vectors can one put into \mathbb{R}^d ?
 - How many ε-almost, norm 1 orthogonal vectors can you put into R^d? Upper bound? Lower bound? Is it tight?

- 6. Suppose y, x_1, \ldots, x_m are norm 1 vectors in \mathbb{R}^n such that
 - $\langle y, x_i \rangle > 0$ (i.e., y has sharp angle with each x_i), and,
 - $\langle x_i, x_j \rangle \leq -\Delta$ for all $i \neq j$ and some $\Delta > 0$ (i.e., the angle between any two x_i is strictly blunt)

Prove $m \leq \frac{1}{\Delta} + 1$.

- 7. Suppose $y, x_1, \ldots, x_m \in \mathbb{R}^n$ such that
 - $\langle y, x_i \rangle > 0$ (i.e., y has sharp angle with each x_i), and,
 - $\langle x_i, x_j \rangle \leq 0$ for all $i \neq j$ (i.e., the angle between any two x_i is blunt)

Prove $m \leq n$.

Hint: If m > n there is a non-trivial linear dependence between the vectors x_i . Prove this implies the origin $(0, \ldots, 0)$ is in the convex hull of the x_i .

8. (The Johnson's bound) Let C be a $[n, k, d = (\frac{1}{2} - \varepsilon)n]_2$ code. Set $\tau = \frac{1}{2} - \sqrt{\frac{\varepsilon}{2}}$. Prove C is $(\tau n, \frac{1}{4\varepsilon} + 1)$ list-decidable.

Hint: Suppose $y \in \mathbb{F}_2^n$ is close to L words $x_1, \ldots, x_L \in \mathbb{F}_2^n$. I.e., y is close to each x_i , but the x_i are far from each other. Map \mathbb{F}_2^n to \mathbb{R}^n by applying $\phi(x) = (-1)^x$ to each coordinate. Manipulate the vectors so that you can use the previous questions.

9. Show $B(\lambda n, n) < 2^{H(\lambda)n}$ and $\lim_{n \to \infty} \frac{1}{n} \log B(\lambda n, n) = H(\lambda)$. Hint: Expand $(\lambda + (1 - \lambda))^n$ and use Stirling's formula.