out: 13/1/15due: 9/2/15

This exercise contains a few basic questions on error correcting codes for those of you who haven't seen it before or want to refresh it. The hat puzzle may be of interest to everybody.

- 1. The Hamming [7,4] code is a subspace $C \subseteq \mathbb{F}_2^7$ generated by the four basis vectors: (1, 1, 1, 0, 0, 0, 0), (1, 0, 0, 1, 1, 0, 0), (0, 1, 0, 1, 0, 1, 0) and (1, 1, 0, 1, 0, 0, 1).
 - Prove the code has distance 3.
 - Find an efficient encoding $E: \mathbb{F}_2^4 \to C$
 - Find an efficient decoding $D: \mathbb{F}_2^7 \to F_2^4$ that can correct any single error.

The code has finite size, so efficient is not well defined. Yet..

- 2. Prove the [7,4] Hamming code is *perfect*, i.e., every word in \mathbb{F}_2^7 belongs to a unique ball of radius 1 around some codeword.
- 3. Prove the Hamming code is optimal, i.e., there are no $[7, 5, 3]_2$ or $[7, 4, 4]_2$ codes.

4. A hat puzzle (by Todd Ebert, PhD thesis, 1998, UC santa Barbara).

There are N prisoners. The jailer decides to give them a test (and kill/free them accordingly). It has two stages:

First stage: A random hat, either white or black, is placed on each of them. Each prisoner can see all hats except his own.

Second stage: Each prisoner is taken to a separate cell and asked for the color of his hat. A prisoner can answer "Black", "White" or "don't know".

If at least one prisoner guesses correctly and none guesses incorrectly, the prisoners win. Otherwise they lose. The prisoners can agree on a strategy before the test takes place.

Show a strategy for n = 7 prisoners with winning probability 7/8.

- 5. (Continues the previous question, but requires more than the guided solution so far).
 - Show a strategy for $n = 127 = 2^7 1$ prisoners with winning probability 127/128.
 - Show the winning probability goes to one when the number of prisoners go to infinity.
- 6. (The Reed-Solomon code) Let q be a prime power and \mathbb{F}_q the field with q elements a_1, \ldots, a_q . Let $1 \leq k \leq q$. Define the following code: For every polynomial $f \in \mathbb{F}_q[x]$ of degree less than k define the codeword $(f(a_1), \ldots, f(a_q)) \in \mathbb{F}_q^q$.

Prove that this defines an $[q, k, n - k + 1]_q$ linear code.

7. (The Hadamard code) Let n be an integer. Define the following binary code: Suppose the elements of \mathbb{F}_2^n are a_1, \ldots, a_{2^n} . For every linear function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ define the codeword $(f(a_1), \ldots, f(a_{2^n})) \in \mathbb{F}_2^{2^n}$.

Prove that this defines an $[2^n, n, \frac{1}{2}]_2$ linear code.

- 8. (Concatenation) Suppose C_1 is an $[n_1, k_1, d_1]_q$ code for some q that is a power of 2 and C_2 is an $[n_2, k_2, d_2]_2$ code for $k_2 = \log_2 q$. We view C_2 as a linear mapping from \mathbb{F}_q to $\mathbb{F}_2^{n_2}$ (How?). We define $\Phi : F_q^{n_1} \to F_2^{n_1n_2}$ by $\Phi(x_1, \ldots, x_{n_1}) = (C_2(x_1), \ldots, C_2(x_{n_1}))$. We define the concatenated $C_1 \circ C_2$ to be $\{\Phi(c_1) \mid c_1 \in C_1\}$.
 - Prove that $C_1 \circ C_2$ is a $[n_1n_2, k_1k_2, d_1d_2]_2$ linear code.
 - Let $k, \varepsilon > 0$. Concatenate the Reed-Solomon code with the Hadamard code to get an $[n = O((\frac{k}{\varepsilon})^2), k, \frac{1}{2} \varepsilon]_2$ code.