
Problem set 13 - Introduction to ECC

out: 13/1/15
due: 9/2/15

This exercise contains a few basic questions on error correcting codes for those of you who haven’t
seen it before or want to refresh it. The hat puzzle may be of interest to everybody.

1. The Hamming [7, 4] code is a subspace C ⊆ F7
2 generated b y the four basis vectors: (1, 1, 1, 0, 0, 0, 0),

(1, 0, 0, 1, 1, 0, 0) , (0, 1, 0, 1, 0, 1, 0) and (1, 1, 0, 1, 0, 0, 1).

• Prove the code has distance 3.

• Find an efficient encoding E : F4
2 → C

• Find an efficient decoding D : F7
2 → F 4

2 that can correct any single error.

The code has finite size, so efficient is not well defined. Yet..

2. Prove the [7, 4] Hamming code is perfect, i.e., every word in F7
2 belongs to a unique ball of

radius 1 around some codeword.

3. Prove the Hamming code is optimal, i.e., there are no [7, 5, 3]2 or [7, 4, 4]2 codes.

4. A hat puzzle (by Todd Ebert, PhD thesis, 1998, UC santa Barbara).

There are N prisoners. The jailer decides to give them a test (and kill/free them accordingly).
It has two stages:

First stage: A random hat, either white or black, is placed on each of them. Each prisoner
can see all hats except his own.

Second stage: Each prisoner is taken to a separate cell and asked for the color of his hat. A
prisoner can answer ”Black”, ”White” or ”don’t know”.

If at least one prisoner guesses correctly and none guesses incorrectly, the prisoners win.
Otherwise they lose. The prisoners can agree on a strategy before the test takes place.

Show a strategy for n = 7 prisoners with winning probability 7/8.

5. (Continues the previous question, but requires more than the guided solution so far).

• Show a strategy for n = 127 = 27 − 1 prisoners with winning probability 127/128.

• Show the winning probability goes to one when the number of prisoners go to infinity.

6. (The Reed-Solomon code) Let q be a prime power and Fq the field with q elements a1, . . . , aq.
Let 1 ≤ k ≤ q. Define the following code: For every polynomial f ∈ Fq[x] of degree less than
k define the codeword (f(a1), . . . , f(aq)) ∈ Fq

q.

Prove that this defines an [q, k, n− k + 1]q linear code.
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7. (The Hadamard code) Let n be an integer. Define the following binary code: Suppose the
elements of Fn

2 are a1, . . . , a2n . For every linear function f : Fn
2 → F2 define the codeword

(f(a1), . . . , f(a2n)) ∈ F2n
2 .

Prove that this defines an [2n, n, 12 ]2 linear code.

8. (Concatenation) Suppose C1 is an [n1, k1, d1]q code for some q that is a power of 2 and C2

is an [n2, k2, d2]2 code for k2 = log2 q. We view C2 as a linear mapping from Fq to Fn2
2

(How?). We define Φ : Fn1
q → Fn1n2

2 by Φ(x1, . . . , xn1) = (C2(x1), . . . , C2(xn1)). We define
the concatenated C1 ◦ C2 to be {Φ(c1) | c1 ∈ C1}.

• Prove that C1 ◦ C2 is a [n1n2, k1k2, d1d2]2 linear code.

• Let k, ε > 0. Concatenate the Reed-Solomon code with the Hadamard code to get an
[n = O((kε )

2), k, 12 − ε]2 code.

2


