out: 27/11/14due: 8/12/14

1. Suppose X_1, \ldots, X_n are boolean, k-wise independent random variables. Let $X = \frac{1}{n} \sum X_i$ and $\mu = \mathbb{E}(X)$. Prove that

$$\Pr[|X - \mu| \ge \varepsilon] \le (\frac{k}{2})^k (\frac{1}{n\varepsilon^2})^{k/2}.$$

.

2. Let $V = \{0,1\}^m$ and $H = \{h : V \to V\}$ a 2UFOHF (i.e., a two universal family of hash functions). Fix two sets $A, B \subseteq V$. Call a hash function $h \in H \varepsilon$ -good for A, B if

$$|\Pr_{x \in V}[x \in A \cap h(x) \in B] - \rho(A)\rho(B)| \leq \varepsilon,$$

where $\rho(C) = \frac{|C|}{|V|}$. Prove that for any $A, B \subseteq V, \varepsilon > 0$,

$$\Pr_{h \in H} [h \text{ is not } \varepsilon \text{-good for } A, B] \leq \frac{\rho(A)\rho(B)(1-\rho(B))}{\varepsilon^2 \cdot |V|} \leq \frac{1}{\varepsilon^2 |V|}.$$

3. For a set C, let U_C denote the uniform distribution over C.

Let $H = \{h : \Lambda \to \Gamma\}$ be a 2UFHOF. For a distribution D over Λ let (H, H(D)) denote the distribution over $H \times \Gamma$ obtained by picking d according to D, picking h uniformly from H and outputting (h, h(d)).

- Prove that for any distribution X over C, $||X U_C||_2^2 = ||X||_2^2 ||U_C||_2^2$.
- Prove that for any distribution X, $||X||_2^2 = \Pr_{x_1, x_2 \in X}[x_1 = x_2]$.
- Prove that $||(H, H(D))||_2^2 \le ||U_H||_2^2 \cdot [||U_\Gamma||_2^2 + ||D||_2^2].$
- Conclude that $||(H, H(D)) U_H \times U_\Gamma||_2 \le ||U_H||_2 \cdot ||D||_2$.
- Prove that $\|(H, H(D)) U_H \times U_{\Gamma}\|_1 \le \sqrt{|\Gamma|} \cdot \|D\|_2$.
- 4. Let G = (V, E) be a directed graph and A its transition matrix. Let $\lambda \in \mathbb{C}$ be any eigenvalue of A. Prove that $|\lambda| \leq 1$.
- 5. In this question we want to demonstrate that an almost λ -eigenvector of a stochastic matrix A (in the sense that it almost solves the eigenvector equation $Av = \lambda v$) might be very far from any true λ -eigenvector of A.
 - Let $G_1 = (V_1, E_2)$ be the following graph:

$$V_1 = \{s, 0, 1, \dots, k, t\}$$

$$E_1 = \{(s, 0), (k, t), (t, s)\} \cup \{(i, i+1) | 0 \le i \le k-1\} \cup \{(i, s) | 0 \le i \le k\}.$$

Let A_1 denote the transition matrix of G_1 . Find a vector $\pi \in \mathbb{R}^n$ s.t. $A_1\pi = \pi$ and prove it is the unique eigenvector of G_1 with eigenvalue 1.

- Let G_2 be the graph G_1 with an additional vertex sink and two additional edges (t, sink) and (sink, sink). Prove that the only 1-eigenvector of this graph is the vector that is zero everywhere except for the sink coordinate.
- Find a stochastic operator $A \in M_n(\mathbb{R})$ that has a unique 1-eigenvector v (By the Perron-Frobenius theorem v has only non-negative coordinates and w.l.o.g. it is a probability distribution) and another probability vector w such that:
 - $\|Aw w\| \le O(2^{-n})$ (i.e., w "nearly" solves the equation Aw = w),
 - w is very far from v, $|v w|_1 = 1 O(2^{-n})$ and $\langle v, w \rangle = 0$.