out: 3/12/14 due: 15/12/14

This homework has many questions, but many of them are simple and shouldn't take much time. You may skip any question you feel you already know.

- 1. Let A(x; y) be a probabilistic algorithm with success probability $\frac{1}{2} + \varepsilon$. A uses m random coins and takes T time. Show how to amplify the success probability to $1 - \delta$ using $m + O(\frac{\log(1/\delta)}{\varepsilon^2})$ random coins and taking $T \cdot \operatorname{poly}(m, \log(\delta^{-1}), \frac{1}{\varepsilon})$ time.
- 2. (RVW) Let \mathbb{F} be a field with q elements. We defined the graph $G = (V = \mathbb{F} \times \mathbb{F}, E)$ where $((a,b), (c,d)) \in E$ iff $(a,b) \in \ell_{c,d}$ and $\ell_{c,d} = \{(x,y) \mid y = cx d\}$. We also defined the map $Rot: V \times [q] \to V \times [q]$ by

$$Rot((a,b),t) = \begin{cases} ((\frac{t}{a},t-b),t) & \text{If } a \neq 0, t \neq 0\\ ((t,-b),a) & \text{Otherwise} \end{cases}$$

Prove this defines a rotation map.

Norms and tensors

For a vector $z \in \mathbb{C}^n$ we denote $||v||_p = (\sum_{i=1}^n |z_i|^p)^{1/p}$ and $||z||_{\infty} = \max_i |z_i|$.

3. (The spectral norm) Let A be a matrix. Define $||A|| = \sup_{v \neq 0} \frac{||Av||_2}{||v||_2}$. Prove:

- $||A + B|| \le ||A|| + ||B||$
- ||cA|| = |c|||A||, ||A|| = 0 iff A = 0
- $||AB|| \le ||A|| ||B||$
- If if A is normal then $||A|| = \lambda_1(A)$.

4. Let A be a matrix over the complex field \mathbb{C} . Define $||A||_{row} = \sup_{v \neq 0} \frac{||Av||_{\infty}}{||v||_{\infty}}$. Prove:

- $||A||_{row} = max_i ||A_i||_1$, where A_i is the *i*'th row of A.
- $||A + B||_{row} \le ||A||_{row} + ||B||_{row}$
- $||cA||_{row} = |c|||A||_{row}, ||A||_{row} = 0$ iff A = 0
- $||AB||_{row} \le ||A||_{row} ||B||_{row}$
- If A is the transition matrix of an undirected graph then $||A||_{row} = 1$.
- 5. Recall that if $A \in M_{n_1,m_1}(F)$ and $B \in M_{n_2,m_2}(F)$ then $A \bigotimes B \in M_{n_1n_2 \times m_1m_2}(F)$ and is defined by $A \bigotimes B[(i_1,i_2),(j_1,j_2)] = A[i_1,j_1] \cdot B[i_2,j_2]$. Show that:

(a)
$$A \bigotimes B = \begin{pmatrix} a_{1,1}B & a_{1,2}B & & \\ & \ddots & & \\ & & a_{i,j}B & \\ & & & \ddots & \\ & & & & a_{n,n}B \end{pmatrix}$$

- (b) Prove that $(A \bigotimes B)^T = A^T \bigotimes B^T$, $(A \bigotimes B)^{\dagger} = A^{\dagger} \bigotimes B^{\dagger}$
- (c) Prove that the tensor product of two projections is a projection.
- (d) Prove that the tensor product of two unitary matrices is unitary.
- (e) Prove that $(A \otimes B) \cdot (C \otimes D) = (AC) \otimes (BD)$, whenever the dimensions fit.
- (f) Prove that Tr $(A \bigotimes B) = \text{Tr } (A) \cdot \text{Tr } (B)$.
- 6. Let $H = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. $\bigotimes^n H = H \bigotimes \dots \bigotimes H$ denotes the operator obtained by tensoring H n times. IP is the inner product matrix: $IP[s,t] = (-1)^{\langle s,t \rangle}$, for any $s,t \in \{0,1\}^n$.
 - (a) Prove $\bigotimes^n H = IP$.
 - (b) Compute the eigenvalues of *IP*.
 - (c) Conclude that $||IP|| = 2^{n/2}$ and $\sqrt{\frac{1}{2^n}}IP$ is unitary.
- 7. Look at the matrix *IP*. For two sets $S, T \subseteq [N = 2^n]$ the combinatorial rectangle $S \times T$ is the minor of the matrix when restricted to $S \times T$. The discrepancy $\Delta(S,T)$ of the combinatorial rectangle is $|t_1 t_0|$ where t_b is the number of times $(-1)^b$ appears in the combinatorial rectangle $S \times T$. Prove that for any two sets $S, T, \Delta(S,T) \leq \sqrt{N \cdot |S| \cdot |T|}$.

The eigenvalues and eigenvectors of Cayley graphs

A character of G is a function $\chi : G \to \mathbb{C}^* = \mathbb{C} \setminus 0$ such that for every $g_1, g_2 \in G$ it holds that $\chi(g_1 \cdot g_2) = \chi(g_1) \cdot \chi(g_2)$ (where the first multiplication is in G and the second in \mathbb{C}). A finite Abelian group has exactly |G| different characters.

Suppose G has n elements, $G = \{g_1, \ldots, g_n\}$ and $f : G \to \mathbb{C}$. We let \vec{f} denote the vector

$$\vec{f} = \begin{pmatrix} f(g_1) \\ f(g_2) \\ \vdots \\ f(g_n) \end{pmatrix}.$$

- 8. For an integer k, let \mathbb{Z}_k denote the $\{0, \ldots, k-1\}$ with addition mod k. Also, let $w = e^{\frac{2\pi i}{k}}$, i.e., w is a primitive root of unity of order k. Define χ_1, \ldots, χ_k by $\chi_i(j) = w^{ij}$.
 - (a) Prove that χ_1, \ldots, χ_k are characters of \mathbb{Z}_k .
 - (b) Prove that $\{\vec{\chi_1}, \ldots, \vec{\chi_k}\}$ is an orthogonal basis of \mathbb{C}^k .
- 9. Let G_1, G_2 be two groups, $f_1 : G_1 \to \mathbb{C}$ and $f_2 : G_2 \to C$. Define $f_1 \bigotimes f_2 : G_1 \times G_2 \to \mathbb{C}$ by $f_1 \bigotimes f_2(g_1, g_2) = f_1(g_1) \cdot f_2(g_2)$.

- Prove that if χ_1 is a character of G_1 and χ_2 a character of G_2 then $\chi_1 \bigotimes \chi_2$ is a character of $G_1 \times G_2$.
- Find all the characters of \mathbb{Z}_2^n . Prove their corresponding vectors are orthogonal. How does this compare to Question 6c?
- 10. Suppose $A \in M_n(\mathbb{C})$ is such that $A_{i,j} = f(g_i g_j^{-1})$ for some function $f : G \to \mathbb{C}$. Prove that $\vec{\chi}$ is an eigenvector of A with eigenvalue $\langle \vec{\chi}, \vec{f} \rangle = \sum_j f(j)\chi(j^{-1})$.
- 11. Let G be a group and $S \subseteq G$. The Caylely graph C(G, S) is the graph C(V, E) with V = G and $(a, b) \in E$ iff $a = bs^{-1}$ for some $s \in S$. Identify the following graphs:
 - $C(\mathbb{Z}_n, \{1\})$
 - $C(\mathbb{Z}_n, \{1, -1\})$
 - $C(\mathbb{Z}_2^n, \{e_1, e_n\})$, where e_i has 1 in the *i*'th coordinate and 0 otherwise.
 - $C(\mathbb{Z}_n \times Z_n, \{(0,1), (0,-1), (1,0), (-1,0)\}).$
- 12. Calculate the eigenvalues and the spectral gap of the Cayley graphs given in question 11.