out: 17/12/14due: 29/12/14

We assume for every $D \ge 3$ and constant $\lambda < 1$ there exist explicit UTS for the family of undirected, *D*-regular graphs with normalized second largest eigenvalue at most λ . Such a construction was given by Hoory and Wigderson.

- 1. Prove the existence of LogSpace-Explicit UTS for undirected, consistently labeled 3-Regular graphs. I.e.,
 - Describe a Turing machine that on input 1^n outputs a sequence $\sigma = (\sigma_1, \ldots, \sigma_T) \in \{1, 2, 3\}^T$.
 - Prove it outputs a UTS for the above family of graphs, and,
 - Prove that it runs in LogSpace.
 - If you are apt to it, write a program implementing the machine. If possible, it would be nice to be able to see the internal transitions of the machine.
- 2. In this question we assume a LogSpace-Explicit UTS for undirected, consistently labeled 3-Regular graphs, as constructed in the previous question.

Let $D \ge 3$ be a constant. Prove the existence of LogSpace explicit UES (universal *exploration* sequence) for the family of undirected *D*-Regular graphs.

- 3. We say a *directed* graph G is an [N, D] graph if G has N vertices and is D-regular (i.e., the in-degree and out-degree of each vertex is exactly D). Let A be the transition matrix of an [N, D] directed graph.
 - Prove that $||A|| \leq 1$.
 - Prove that the all-one vector is a 1-eigenvector of A.

Let G and A be as above, and u the all-one vector. Let $\lambda(A) = \max_{x \perp u, \|x\|=1} \|Ax\|$. We say G is an $[N, D, \lambda]$ graph if $\lambda(A) \leq \lambda$.

- 4. The SVD (singular value decomposition) states that every $n \times n$ matrix A over \mathbb{C} can be expressed as A = UDV where U, V are unitary and D is diagonal with non-negative real values σ_i over the main diagonal of D. The values $\sigma_1 \geq \ldots \geq \sigma_n$ are called the *singular* values of A and are uniquely determined by A. When A is normal U = V and the singular values coincide with the eigenvalues of A.
 - Prove that for every A, $||A|| = \sigma_1(A)$.
 - Prove that for every A, $\sigma_i(A) = \sqrt{|\lambda_i(A^{\dagger}A)|}$, where for a normal matrix M, $\lambda_i(M)$ is the *i*'th largest eigenvalue in absolute value.

The next questions are from the work of Rozenman and Vadhan on derandomized squaring. Questions 3-5 are adaptations of things we saw in the regular, undirected case to the *regular*, directed case.

- Let G be a directed, connected, D-regular graph with at least one self-loop on each vertex. Let A be its transition matrix. Prove that the following three conditions are equivalent:
 - (a) G is strongly connected.
 - (b) G is weakly connected.
 - (c) $\lambda(A) < 1$.
- Let G and A be as above. Prove that if G is connected then $\lambda(A) \leq 1 \frac{1}{2D^2N^2}$.
- 5. Prove that if H is a $[N, D, \lambda]$ directed graph with transition matrix A, then $A = (1 \lambda)J + \lambda C$ for some matrix C with $||C|| \leq 1$. (We proved a similar lemma in class for the undirected case, but the proof for the directed regular case is slightly more intricate).
- 6. Assume G_1 is a directed $[N_1, D_1, \lambda_1]$ labeled graph with labeling ℓ_1 , and H a directed $[D_1, D_2, \lambda_2]$ labeled graph with labeling ℓ_2 . The *derandomized square graph* $G(\widehat{S}H$ has N_1 vertices, out-degree $D_1 \cdot D_2$ and the following labeling function: $\ell : [N_1] \times [D_1] \times [D_2] \to [N_1]$ defined by

$$\ell(v; a, b) = \ell_1(\ell_1(v; a); \ell_2(a; b)).$$

We write in short: v[a, b] = v[a][a[b]].

- Give an example where G and H are connected but $G \otimes H$ is not connected.
- Give an example where G and H are undirected and consistently labeled, but G(SH) is not undirected.
- Give an example where G(S)H is *not* regular.
- Prove that if G is consistently labeled then $G(\mathbb{S}H)$ is D_1D_2 regular and consistently labeled.
- 7. Assume G is consistently labeled with transition matrix A. Let M be the transition matrix of $G(\mathbb{S}H)$.
 - Prove that $M = (1 \lambda_2)A^2 + \lambda_2 D$ for some matrix D with $||D|| \le 1$. does this imply that if G and H are connected then so does $G(\mathbb{S}H)$?
 - Conclude that G(SH) is an $[N_1, D_1D_2, f(\lambda_1, \lambda_2)]$ graph for $f(\lambda_1, \lambda_2) \leq (1 \lambda_2)\lambda_1^2 + \lambda_2$.
 - Conclude that if G and H are connected then so does G(S)H.
- 8. Consider the following sequence. $G_0 = G$ is a directed $[N, D_1, \lambda = 1 \gamma]$ graph. H_i is a $[N_i = D_1 D_2^i, D_2, \frac{1}{100}]$ graph. Define

$$G_{i+1} = G_i (S H_i),$$

and notice that it is well defined for all $i \ge 0$.

- Prove that G_k is a $[N, N_i, 1 (\frac{3}{2})^k \gamma]$ graph.
- Assume $\{H_i\}$ is fully explicit. Show how to compute the labeling function $\ell_k(v, a)$ of G_k in $Space(O(\log N), k)$.