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Lecture 2 – Deterministic Amplification

Amnon Ta-Shma and Dean Doron

1 A quick review of concentration bounds

Theorem 1 (Markov’s inequality). If X is a nonnegative random variable then for every a > 0,

Pr[X ≥ a] ≤ E[X]
a .

Theorem 2 (Chebyshev’s inequality). If X is a random variable, then for every a > 0,

Pr[|X − E[X]| ≥ a] ≤ Var[X]

a2
.

Theorem 3 (The Chernoff bound, [4, 2]). Suppose Y1, . . . , Yn are i.i.d. boolean random variables
with expectation µ. Then for every ε > 0,

Pr

[
n∑
i=1

Yi > (µ+ ε)n

]
≤ e−2ε2n.

If the Yi-s are not necessarily boolean, we have:

Theorem 4 (The Chernoff-Hoeffding bound, [4]). Suppose Y1, . . . , Yn are independent random
variables with expectations µ1, . . . , µn such that Yi ∈ [a, b] for every i ∈ [n]. Then for every ε > 0,

Pr

[
n∑
i=1

(Yi − µi) > εn

]
≤ e

− 2ε2n
(b−a)2 .

2 k-wise independence

Definition 5. Let X1, . . . , Xn be a sequence of random variables. We say they are k-wise indepen-
dent if for all 1 ≤ i1 < . . . < ik ≤ n, Xi1 , . . . , Xik are independent. That is, for every α1, . . . , αk in
their support, Pr[Xi1 = α1 ∧ . . . Xi1 = αk] = Pr[Xi1 = α1] · . . . · Pr[Xik = αk]. We will also assume
that each Xi by itself is uniform.

We shall now construct a small pairwise-independent sample space. Namely, X1, . . . , Xn where
each Xi is uniform over [n] and the support size is n2 (this is tight! explain why). Assume that n
is a power of 2 and consider the field F = GF(n).

The sample space is F× F and the distribution on the sample points is uniform. For every i ∈ [n],
we set Xi(a, b) = a · i + b, where i is considered as an element from the field F and addition and
multiplication are in F. First, note that every Xi is uniform over F. Now, for every distinct i, j ∈ [n]
and α1, α2 ∈ F,

Pr
a,b∈F

[Xi = α1 ∧Xj = α2] = Pr
a,b∈F

[(
1 i
1 j

)(
a
b

)
=

(
α1

α2

)]
.
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As the determinant of

(
1 i
1 j

)
is nonzero,

Pr
a,b∈F

[Xi = α1 ∧Xj = α2] =
1

|F|2
= Pr

a,b∈F
[Xi = α1] · Pr

a,b∈F
[Xj = α2].

To generalize the above construction for k-wise, the sample space is (a0, . . . , ak−1) ∈ Fk and xi for
i ∈ F is Xi =

∑k−1
t=0 ati

t. It is not hard to see that this is indeed a k-wise independent sample space
of size nk.

What if we need X1, . . . , Xn to be boolean and k-wise independent? One way is to use the previous
construction and truncate every element Xi to, say, its least significant bit. We thus have:

Claim 6. There exists an explicit distribution that is k-wise independent over {0, 1}n and has
support size nk.

Proof. Let F = {a0, . . . , an−1} be a field of size n = 2q. It follows from the above discussion that
the sample space D =

{
Ay | y ∈ Fk

}
⊆ Fn is k-wise independent over F, where A is the n × k

matrix for which Ai,j = aj−1
i−1 (why?). Note that A is the generator matrix of a Reed-Solomon code,

and also known as the Vandermonde matrix of the field elements.

Consider the canonical representation of every field element a ∈ F as a vector in Fq2. Addition in F
is thus a simple addition over Fq2, whereas multiplication in F is a linear transformation. Namely,
y 7→ α · y in F corresponds to x 7→ Mα · x in Fq2, where Mα ∈ Fq×q2 . Under this representation,

Ay ∈ Fn in mapped to Āx ∈ Fnq2 such that x ∈ Fkq2 encodes yi in its i-th block and Ā ∈ Fnq×kq2 has
MAi,j as its (i, j)-th sub-matrix.

Our new sample space, D′ ⊆ Fk2, is obtained by restricting every vector in
{
Āx | x ∈ Fkq2

}
to n

coordinates, e.g., by taking every other q coordinates. This specific construction corresponds to
truncating every element of D to its least significant bit.

Take I ⊆ [nq] of size k that fits our restriction. As the corresponding rows in Ā are independent,

verify to yourself that indeed (Āx)I is uniform where x ranges over Fkq2 . D′ is of size 2kq = nk, as
desired.

In fact we can do better. We will see that for pairwise independence. The sample space is {0, 1}logn

and the distribution on the sample points is uniform. For every i ∈ {0, 1}logn, we set Xi(a) =
〈a, i〉 mod 2. The sample space is of size n. We will prove in the exercise that this is indeed a
pairwise independent sample space. In fact, this bound is also tight:

Claim 7. If X1, . . . , Xn are boolean random variables that are pairwise independent then the support
size is at least n.

Proof. Consider the S × n matrix describing the distribution. Consider every column as some
vi ∈ RS , where we map every b ∈ {0, 1} to (−1)b. We will show that the vi-s are orthogonal and
therefore independent, and this implies S ≥ n.

For every i 6= j,

〈vi, vj〉 = |{k ∈ [S] | (vi)k = (vj)k}| − |{k ∈ [S] | (vi)k 6= (vj)k}|

= |S| · Pr[vi = vj ]− |S| · Pr[vi 6= vj ] = 2|S|
(

Pr[vi = vj ]−
1

2

)
= 0.
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In fact, a more general lower bound can be given:

Theorem 8. If X1, . . . , Xn are boolean random variables that are k-wise independent then the

support size is at least
∑b k

2
c

i=0

(
n
i

)
≈ n

k
2 .

Proof. As an exercise.

3 Deterministic amplification

Most of the material in this section (and a lot that is not in this section) is covered in a survey of
Goldreich [3] and a monograph of Luby and Wigderson [5].

BPP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time
with a two-sided bounded error. RP and coRP are its one-sided variants. Formally:

Definition 9. For a < b, a language L ∈ BPP[a, b] if there exists a polynomial-time probabilistic
TM M(x, y), where:

• If x ∈ L then Pry[M(x, y) = 1] ≥ b.

• If x /∈ L then Pry[M(x, y) = 1] ≤ a.

We denote BPP = BPP[1
3 ,

2
3 ], RP = BPP[0, 1

2 ] and coRP = BPP[1
2 , 1].

Suppose we have L ∈ BPP[a − ε, a + ε], for some constant a and ε = ε(n), accepted by a TM
M that on input of length n uses t(n) random bits. If we run M k times, each time with fresh,
independent, random bits and eventually output according to whether the average of k answers
exceeded a, the error probability should decrease exponentially.

If we denote Xi as the answer in the i-th run, when x ∈ L we err if 1
k

∑k
i=1Xi < a. By Chernoff,

the probability for this to happen is bounded by e−Ω(ε2k). Likewise for x /∈ L. Thus, to bring the

error to δ, we can take k = O(
log 1

δ
ε2

). Thus, we can amplify any polynomially large gap ε = n−α

to an exponentially small error δ = 2−n
c

in polynomial time, and therefore also using polynomially
many random bits. The question we ask is whether we can re-use random bits and reduce the error
without using too many additional random bits.

Throughout, we are given x and a black-box access to M(x, y). We are allowed to pick y1, . . . , yT
in some way, and answer according to M(x, y1), . . . ,M(x, yT ). Denote m = |y|. So far we have seen
that with independent trials, with T queries and mT random coins we can amplify (1

2 − ε,
1
2 + ε)

to (δ, 1− δ) error with T = O( 1
ε2

log 1
δ ).

3.1 Via pair-wise independence

Let us start with k = 2. Pick y1, . . . , yT from a pairwise independent distribution where each yi is
uniform over Σ = {0, 1}m. For every i ∈ [T ], let Yi be the boolean random variable that is 1 iff
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M(x, yi) answered correctly. Denote µi = E[Yi] ≥ 1
2 + ε. We answer according to the median of the

T trials. By Chebyshev and pairwise independence,

Pr[we are wrong] ≤ Pr

[∣∣∣∣∣
T∑
i=1

Yi − µi

∣∣∣∣∣ ≥ εT
]

≤
Var[

∑
i Yi]

ε2T 2
≤

(1
2 − ε)(

1
2 + ε)

ε2T
≤ 1

ε2T
= δ.

We thus choose T = 1
ε2δ

. The sample space is of size at most 22m so overall 2m random coins are
used. If we want to amplify a non-negligible gap to a constant gap, it is sufficient to use pairwise
independence.

3.2 Via k-wise independence

We proceed with k = 4. For every i ∈ [T ], let Xi be the output of the i-th run and let X =
∑

iXi,
µi = E[Xi] and µ =

∑
i µi. By Markov,

Pr[|X − µ| ≥ A] ≤ Pr[(X − µ)4 ≥ A4] ≤ E[(X − µ)4]

A4
.

Denote Zi = Xi − µi, E[Zi] = 0. By linearity,

E[(X − µ)4] = E[(
∑
i

Zi)
4] =

∑
i1,i2,i3,i4

E[Zi1Zi2Zi3Zi4 ].

By four-wise independence, whenever all i1, i2, i3, i4 are different, E[Zi1Zi2Zi3Zi4 ] = E[Zi1 ] ·E[Zi2 ] ·
E[Zi3 ] · E[Zi3 ]. However, for every i, E[Zi] = 0, and so the term vanishes. In fact, this is true for
every term i1, i2, i3, i4 in which some term appears with an odd power. Thus, the only terms that
survive are those where every term appears an even number of times. Thus,

E[(X − µ)4] =
∑
a

E[Z4
a ] +

(
4

2

) ∑
1≤a<b≤T

E[Z2
a ]E[Z2

b ]

=
∑
a

E[Z4
a ] +

(
4

2

) ∑
1≤a<b≤T

Var[Za] Var[Zb].

As for every i, Var[Zi] = µi(1− µi) ≤ 1,

E[(X − µ)4] ≤ T +

(
4

2

)(
T

2

)
≤ 4T 2.

We then obtain:

Pr[we are wrong] ≤ Pr

[∣∣∣∣∣
T∑
i=1

Yi − µi

∣∣∣∣∣ ≥ εT
]

≤ E[(X − µ)4]

ε4T 4
≤ 4T 2

ε4T 4
=

4

ε4T 2
= δ.

So, with four-wise independence, we get an error of O(T−2). Specifically, we take T = 2
ε2

√
1
δ . For

arbitrary 2k-independence, similar analysis shows that the error decreases like O(T−k).
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Lemma 10. Let X be the average of T k-wise independent random variables for an even integer
k, and let µ = E[X]. Then,

Pr[|X − µ| ≥ ε] ≤
(

k2

4Tε2

) k
2

.

The situation we have so far:

Table 1: Amplifying (1
2 − ε,

1
2 + ε) to (δ, 1− δ) if r random bits are initially required

Number of samples Number of random bits

Truly random O(
log 1

δ
ε2

) r ·O(
log 1

δ
ε2

)

k-wise independence O( 1
ε2

k2

δ
2
k

) O(kr + k log 1
ε + log 1

δ )

Pairwise independence O( 1
ε2

1
δ ) O(r + log 1

δε)

3.3 Via expanders

We start with a one-sided error (0, α) algorithm. With full independence, O( 1
α log 1

δ ) trials are
sufficient (Check, and compare to the two sided error). Now, consider an expander G = (V =
{0, 1}m , E) with a constant degree D and a constant λ = min

{
λ2(G),−λ|V |(G)

}
< 1.

The construction: Choose y1 uniformly at random and take a random walk on G of length T − 1
to obtain y2, . . . , yT . Accept iff one of M(x, yi) accepted. Fix x ∈ {0, 1}n. If x /∈ L then we always
reject, so we assume from now on that x ∈ L. Let Bad ⊆ {0, 1}m be the set of strings that are bad
for x. That is, Bad = {y ∈ {0, 1}m |M(x, y) = 0}. Thus,

Pr[we are wrong] = Pr

[
T∧
i=1

(yi ∈ Bad)

]
.

Then:

Theorem 11. Using our above notations,

Pr

[
T∧
i=1

(yi ∈ Bad)

]
≤ (β + (1− β)λ)T ,

where β = |Bad|
|V | .

In our case, β ≤ α and (β+(1−β)λ) = 1−(1−λ)(1−β) < 1. Thus, withm+logD·(T−1) = m+O(T )
random coins we can amplify, say, (0, 1

2) to (0, 1− 2−Ω(T )).

Proof. The proof has two main components. First, we need to translate the condition
∧T
i=1(yi ∈

Bad) to an algebraic terminology, and then we analyze it.

The translation to algebraic terminology. Let M be the transition matrix of G and denote
|V | = 2m = N . Pick y1 ∈ V uniformly at random. That is, the initial distribution over the
vertices is u = 1

N 1N . Define an N × N diagonal matrix B with B[y, y] = 1 if y ∈ Bad and
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0 otherwise. In this terminology, |〈1, Bu〉| is the probability a random element belongs to
BAD (and so is β). |〈1, BMBu〉| is the probability in a random walk of length two, both
samples belong to BAD. Similarly, |〈1, (BM)kBu〉| is the probability in a random walk of
length k + 1 the walk is confined to the set BAD, i.e., all samples belong to BAD.

Reducing the analysis to understanding a single step : As B is a projection, B2 = B, and
so (BM)kBu = (BMB)kBu. Also, the vector is supported only on coordinates from Bad,
Cauchy-Schwartz implies

|〈1, (BMB)TBu〉| ≤
√
βN

∥∥ (BMB)TBu
∥∥

2

and since ‖AB ‖2 ≤ ‖A ‖2 ‖B ‖2,

|〈1, (BMB)TBu〉| ≤
√
βN ‖BMB ‖T2 ‖Bu ‖2

=
√
βN

√
β

N
‖BMB ‖T2

= β ‖BMB ‖T2 ≤ ‖BMB ‖T2 .

Summing up, it is enough to show ‖BMB ‖2 < 1, i.e., it is enough to analyze a single step.

Thus, we are left with analyzing a single step. We will show, ‖BMB ‖2 ≤ β + (1− β)λ.

Claim 12 ([6], Proposition 3.2). Let G be an undirected regular graph on n vertices, with λ =
min

{
λ2(G),−λ|V |(G)

}
and its transition matrix is B. Then, B = (1− λ)J + λE for some E with

‖E ‖2 ≤ 1 and J that is the normalized all-ones matrix. I.e., B is a convex combination of J (that
corresponds to a completely random walk) and E (that is some arbitrary error matrix).

Proof. The first eigenvector of B is u the all one vector (possibly normalized) with eigenvalue 1. u
is also an eigenvector of J with eigenvalue 1. We conclude that u is a common eigenvector of B, J
and E and with eigenvalue 1 for all of them (Check!).

What about vectors in the orthogonal complement? Let W⊥ denote all vectors perpendicular to
x, i.e., all x such that 〈x, u〉 = 0. Then Jx = 0 (Why?). Also, W⊥ is invariant under B (Why?).
Thus, W⊥ is invariant also under E (Why?).

Thus, to bound the norm of E, it is enough to limit attention to W⊥. For v ∈ W⊥, ‖Ev ‖ =
1
λ ‖Av ‖ ≤

λ
λ ‖ v ‖ = ‖ v ‖. Thus, ‖E ‖2 ≤ 1.

Now, let us express BMB in this decomposition. We get

BMB = B((1− λ)J + λE)B = (1− λ)BJB + λBEB

The BJB part is the part corresponding to a true random walk step, the other part is “junk”,
and indeed we easily see that ‖BEB ‖2 ≤ ‖B ‖2 ‖E ‖2 ‖B ‖2 ≤ 1. Thus, we are now reduced to
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analyzing BJB, i.e., one true random walk step. For any x 6= 0, x =
∑

i xiei. Then, (BJBx)[i] =
1
N

∑
i∈Bad xi if i ∈ Bad and 0 otherwise (check!). Thus, by Cauchy-Schwarz,

‖BJBx ‖2 =

√√√√βN

(
1

N

∑
i∈Bad

xi

)2

=

√
β

N

∑
i∈Bad

xi ≤
√
β

N

√
βN ‖x ‖2 = β,

which completes the proof.

The two-sided error case is along the same ideas, but a bit more complicated. The analysis may
use the useful expander Chernoff bound.

Theorem 13. Let G be an undirected D-regular graph with 1 = λ1 > λ2 ≥ . . . ≥ λn and spectral
gap 1 − λ̄ and let fi : V → [0, 1] for i ∈ [T ]. Take a random walk v1, . . . , vT and let Xi be the
random variable fi(vi). Denote µi = E[Xi] and µ̄ = 1

T

∑
i µi. Then,

Pr

[∣∣∣∣∣ 1

T

∑
i

Xi − µ̄

∣∣∣∣∣ ≥ ε
]
≤ 2e−

1
4

(1−λ̄)ε2T .

We can then add the expander walk technique to our table, obtaining:

Table 2: Amplifying (1
2 − ε,

1
2 + ε) to (δ, 1− δ) if r random bits are initially required

Number of samples Number of random bits

Truly random O(
log 1

δ
ε2

) r ·O(
log 1

δ
ε2

)

Expander walk O(
log 1

δ
ε2

) r +O(
log 1

δ
ε2

)

k-wise independence O( 1
ε2

k2

δ
2
k

) O(kr + k log 1
ε + log 1

δ )

Pairwise independence O( 1
ε2

1
δ ) O(r + log 1

δε)

3.4 Via dispersers

We continue with the one-sided error. Let E : [N ]× [T ]→ [M ] be a (K,α) seeded disperser. The
construction: Pick ȳ ∈ [N ] uniformly at random and for every i ∈ [T ] choose yi = E(ȳ, i). As
usual, accept if and only if some M(x, yi) accepts.

Suppose we start with a (0, α) error algorithm. If x /∈ L then we always reject. If x ∈ L let
Good = {y ∈ [M ] |M(x, y) = 1}, so |Good| ≥ α · 2m. Let B be the set

B = {ȳ | Γ(ȳ) ∩Good = ∅} .

By the disperser property |B| < K (Why?? This is the central point of the proof, so if you don’t
see it, insist on it until you see it). We reject iff we sampled ȳ ∈ B. Thus,

Pr[we reject] ≤ K

N
.

The number of random coins used is logN . Say α = 1
2 . An optimal disperser exists with T =

O(ln N
K ), so O(log 1

δ ) samples are sufficient to amplify the error to (0, 1− δ).
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The comparison for one-sided error is given by:

Table 3: Amplifying (0, ε) to (δ, 1− δ) if r random bits are initially required

Number of samples Number of random bits

Truly random O(1
ε log 1

δ ) r ·O(1
ε log 1

δ )

Expander walk O(1
ε log 1

δ ) r +O(1
ε log 1

δ )

Disperser (optimal) O(1
ε log 1

δ ) r +O(log ε
δ )

3.5 Via extractors

We return to the two-sided case, and assume that we start with an (1
2−ε,

1
2 +ε) error algorithm. Let

E : [N ]× [T ]→ [M ] be a (k, ε) extractor. The construction: Pick ȳ ∈ [N ] uniformly at random and
for every i ∈ [T ] choose yi = E(ȳ, i). Accept if and only if the majority of the M(x, yi) accepted.

Fix x and let Good = {y ∈ [M ] |M(x, y) answers correctly}. We know that µ(Good) ≥ 1
2 + ε. Let

Bad =
{
ȳ ∈ [N ] | Pri∈[T ][E(ȳ, i) ∈ Good] < 1

2

}
. That is, ȳ ∈ Bad if and only if the majority is

incorrect and we err. Assume to the contrary that |Bad| ≥ 2k = K and let XB be the uniform
distribution over Bad, so H∞(XB) ≥ k. On one hand, we have |E(XB, Ut) − Um| ≤ ε. On the
other hand, note that

Pr
ȳ∈Bad,i∈[T ]

[E(ȳ, i) ∈ Good] <
1

2
,

and as µ(Good) ≥ 1
2 + ε, we have that |E(XB, UT )− UM | < ε, in contradiction.

Thus, |Bad| < K so the probability that we pick a bad ȳ is again at most K
N = δ. The number of

random coins used is logN .

Say ε = 1
6 . An optimal extractor exists with T = O(ln N

K ), so O(log 1
δ ) samples are sufficient to

amplify the error to (δ, 1− δ), assuming M = O(KT ). Observe our final comparison:

Table 4: Amplifying (1
2 − ε,

1
2 + ε) to (δ, 1− δ) if r random bits are initially required

Number of samples Number of random bits

Truly random O(
log 1

δ
ε2

) r ·O(
log 1

δ
ε2

)

Extractor (optimal) O(
log 1

δ
ε2

) r +O(log 1
δ )

Expander walk O(
log 1

δ
ε2

) r +O(
log 1

δ
ε2

)

k-wise independence O( 1
ε2

k2

δ
2
k

) O(kr + k log 1
ε + log 1

δ )

Pairwise independence O( 1
ε2

1
δ ) O(r + log 1

δε)

4 Approximating frequency moments in small space

Definition 14. A family H ⊆ [n] → Σ is a k-universal family of hash functions if for any 1 ≤
i1 < . . . < ik ≤ n, for all σ1, . . . , σk ∈ Σ,

Pr
h∈H

[h(i1) = σ1 ∧ . . . h(ik) = σk] =
1

|Σ|k
.
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Equivalently, if we define random variables n random varibles X1, . . . , Xn defined by uniformly
sampling h ∈ H and setting Xi = h(i), then X1, . . . , Xn are k-wise independent.

Consider a “stream” of inputs x1, . . . , xn ∈ Σ. For every a ∈ Σ, let ma denote the number of times
a occurs. We want to approximate F2 =

∑
am

2
a by allowing only a single pass over the inputs. We

will achieve an arbitrary constant accuracy using O(log(n|Σ|)) space. The result is due to Alon,
Matias and Szegedy [1].

The algorithm is as follows:

1. Fix a 4-universal family of hash functions H ⊆ Σ→ {−1, 1}.

2. Pick h1, . . . , hT ∈ H for some T that we shall soon determine.

3. For each t = 1 to T , compute st =
∑n

i=1 ht(xi).

4. Output 1
T

∑T
i=1 s

2
t .

The space complexity is easy. We need T counters. Each counter counts up to n, with O(log n)
bits. Each h ∈ H is represented by O(log |Σ|) bits (why?).

We now turn to estimating the accuracy (and confidence) of this approximation method. Before
we start we notice that st =

∑n
i=1 ht(xi) =

∑
amaht(a). Thus, if an element appears many times

the values ht(xi) are more correlated than the case where, say, each element appears once. Now,

E[st] =
n∑
i=1

E[h(xi)] = 0

and due to pairwise independence,

E[s2
t ] =

∑
a,b

mamb E[h(a)h(b)]

=
∑
a

m2
a E[h2(a)] +

∑
a6=b

mamb E[h(a)]E[h(b)] =
∑
a

m2
a = F2.

This means that we use an unbiased estimator for F2, .i.e., a random variable whose average is
correct. We are now left with estimating how concentrated is the random variable s2

t around its
mean.

Note that s1, . . . , sT are independent. Let Yi = s2
i , and we know that E[Yi] = F2. We want to say

that Pr
[∣∣∣ 1
T

∑T
i=1 Yi − F2

∣∣∣ ≥ εF2

]
is small. By Chebyshev’s inequality,

Pr

[∣∣∣∣∣ 1

T

T∑
i=1

Yi − F2

∣∣∣∣∣ ≥ εTF2

]
≤

Var
[∑T

i=1 Yi

]
ε2T 2F 2

2

=
T Var[Y1]

ε2T 2F 2
2

.

We are back to a single hash function. Computing the variance, we have

Var[Y1] = E[s4
1]−

(
E[s2

1]
)2

= E[s4
1]− F 2

2 .
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We compute the fourth moment using 4-wise independence:

E[s4
1] =

∑
a,b,c,d∈Σ

mambmcmd E[h(a)h(b)h(c)h(d)]

=
∑
a

m4
a E[h4(a)] + 3

∑
a6=b

m2
am

2
b E[h2(a)h2(b)]

= 3
∑
a,b

m2
am

2
b − 2

∑
a

m4
a = 3F 2

2 − 2F4,

so Var[Y1] = 2(F 2
2 − F4) ≤ 2F 2

2 . Hence:

Pr

[∣∣∣∣∣ 1

T

T∑
i=1

Yi − F2

∣∣∣∣∣ ≥ εF2

]
≤ 2T 2F 2

2

ε2T 2F 2
2

=
2

ε2T
≤ 1

3
,

for T ≥ 6
ε2

.

So far, with O( 1
ε2

log(n|Σ|)) space, we have a confidence of 1
3 . So far (and if we are only interested in

constant confidence) we could have worked with h1, . . . , hT that are chosen in a pairwise independent
manner.

If we want to improve the confidence to an arbitrary δ we can repeat the above procedure K
independent times and take the median. Trial i succeeds if the answer is within ε from F2. By
Chernoff, the probability that 1

2 of the trials are unsuccessful is at most 2−Ω(K) = δ. If half are
successful, the median is also good (why?).
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