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Lecture 3 — Small bias with respect to linear tests

Amnon Ta-Shma and Dean Doron

1 The Fourier expansion

1.1 Over general domains

Let G be a finite group with operation + and identity 0. Then, the group algebra C[G] is the set
of all functions f € C[G]. Obviously, it is a vector space on G over the field C of dimension |G|
and a natural basis for C[G] is
1, z=g
14(z) = {

0, otherwise

for every g € G. It is also an inner-product space under the inner product

(fi.fo) = E [file ) f2(x) |G\ > fix)

zeG

and it is easy to see that the basis {14} e is an orthogonal basis under this inner product. Often,
one writes g instead of 1, and in this notation an element f € C[G] is represented as } . ag9
(which is often the notation used in quantum computation).

We now introduce another basis, that contains only functions that are homomorphisms from G to

C*.

Definition 1. A character of the finite group G is a homomorphism x : G — C*, i.e., x(v +y) =
x(x)x(y) for every x,y € G, where the addition is the group operation in G, and the multiplication
is the group operation in C*.

We have the following easy facts:

Claim 2. Let G be a finite group. Then:

~

. Xtrivial(z) = 1 for every x € G is a character. It is called the trivial character.
2. If x1 and x2 are characters of G then so is x1 - x2 (where x1 - x2(z) = x1(x)x2(z)).

3. For every character x of G and x € G, |x(z)| =1 (the absolute norm is of course in C). In
particular, if we define x1(x) = x1(x), then X1 is also a character and X - X = Xtrivial-

4. This implies that G = {x € C|G] | x is a character} is an Abelian group, with identity as in
item (1), multiplication as in item (2) and inverse as in item (3).

5. Let x be a non-trivial character. Then, E[x] = 0. This means that every non-trivial character
is orthogonal to the trivial character.

We can then show:



Claim 3. Let G be a finite group. The set of all characters of G is orthonormal.

Proof. First, note that (x,x) = E[|x|?] = 1. Next, take x; and x2 be two distinct characters of G.
Then, (x1,x2) = E[x1xz2]. However, x1Xz is itself a character, and y1Xx2 = X1X2_1 # 1 since they
are distinct. Thus, E[x1x32] = 0. O

As a consequence, G has at most dim(C[G]) = |G| characters.

We will soon see that when G is Abelian, G has a full set of characters. The resulting orthonormal
basis for G[C] is called the Fourier basis, and the linear transformation between the natural basis
and the Fourier basis is called the Fourier transform. Thus, every f € G[C] can be (uniquely)
written as f =) 9eG f (9) - xg, and the coefficients f (g) are called the Fourier coefficients.

Let us see some examples.

For G = Zgy, it is easy to check that x; = 1 and y2(z) = (—1)* are characters (and we know that
there are no more than 2). Next consider G = Z,, with addition modulo m. If x is a character, and
x € G, then x(z)™ = x(mx) = x(0) = 1, hence, x(x) is an m-th root of unity. Denote w = em .
For 0 < j < m, define x; : Z,, — C by x;(z) = wi®. Tt is easy to see that these are distinct

characters of Z,, and since we have m of them, they are all the characters and |G| = |G|.

Let f : Zy, — C. By now, we know that its Fourier expansion is given by f(n) = Zzl:_ol f(k)wk"
If we treat f and f as vectors in C™, we get

00 W01 o W0 (m=1)
W10 Wil o Wl (m=1) )
f = : : .. . : f7
w(m_l)o w(m_l)l e w(m_l)(m_l)

and the above matrix is called the Fourier matrix.

We now consider group products. Say (A4,-), (B,-) are two groups. A and B are not necessarily
Abelian, and we denote their operation by - rather than + to (somewhat) distinguish them from
the Abelian case. Let G = A x B (i.e., the group operation in G is (a1, b1)- (a2, b2) = (a1-az,ba-b2)).
For f € C[A] and g € C[B], define f ® g € C[A x B] by (f ® g)(a,b) = f(a)g(b). Then:

Claim 4. If f € A and g € B then f®g € Ax B. Also, all pairs f; @ gj for f; € A and g; € B

are distinct.

Back to the Abelian case, we see that if A and B are finite Abelian groups than Claim 4 gives us
|Al - |B|] = |A x B| characters, and so we have a full set of characters. As every Abelian group can
be decomposed as a product of cyclic groups, we have:

Exercise 5. Let G be a finite Abelian group. Then G ~ G.

So what are the characters of G = Z§ = Zy x ... x Z3? By the above discussion, for every
a=(ag,...,an) € Z5 we have the character

Xa(T) = (X1 @ - - ®Xa, ) (X1, -+, Tn) = Hxai(ﬂfi) = [T = (-p)2vees,

i



Equivalently we could say that for every S C [n] there is the character xg(x) = (—1)2=ies®. The
trivial character is the character of the empty set. Parity is the character of the full set (more
precisely, (—1)P"'%) and every function f : {0,1}" — C can be written as

SDCICED WU

SCln] SCln]

We also see that the linear transformation converting the natural basis to the Fourier basis or vice
versa, is the Hadamard matrix.

Also, because of the orthonormality of the characters:

Theorem 6. For any f, f1, fo: G — C,
o f(5)={(fxs).
e (Parseval’s Theorem) (f, f) =3  cc fl9)%

e (Plancherel’s Theorem) (f1, fo) = deg fl(g)fZ(g)-

For example, let us take f : {0,1}* — {0,1} to be the majority function. Verify that f(0)

A1) = f{2h) = f(8Y) = -4, f({L.2}) = f({1,3)}) = ({2 3}) = 0 and f({1,2,3})

you can check that Parseval’s theorem holds, as (f, f) = 2.

% Also

We next give an intuitive explanation on the meaning of these numbers.

2 e-biased sets

A set T C A e-fools a function f : A — {0,1} if |Pryea[f(z) = 1] — Praer[f(z) = 1]| < e. A set
T e-fools a class of functions C if it e-fools every f € C. A set T C {0,1}"* is called e-biased if it
e-fools all functions f : {0,1}* — {0,1} that are linear over Fy. Formally:

Definition 7. Let T C {0,1}*. For a nonzero w € {0,1}* we denote

bias, (T) = % - SPerT[(w, sy =1]|.

The bias of T is bias(T') = max, o bias,(T"). We say that T is e-biased if bias(T') < €.

An e-biased set tries to fool a class of functions using samples from a small set (in other words, we
try to achieve pseudo-randomness with respect to a (very) limited class of tests). It is then natural
to ask how small can e-biased sets be. We shall soon answer this. But first, we interpret e-bias
using Fourier representation.



2.1 ¢ bias and the Fourier transform

Let X be a distribution over {0,1}" and w € {0,1}". Then,

) 1
bias, (X) = 5| Pr

Pr [(w, s) = 0] = Pr [(w,s) = 1]| = | Y (-1 Pr[X =]

= | Y X6)xwls)| = 2 (X oxw)| = 2" |X(w)].
se{0,1}"

Thus, we can redefine € bias in the Fourier language.

Definition 8. (equivalent to Def 7) Let T C {0, 1}* and X the flat distribution over S. We say
that T is e-biased if X(S) < &2™™ for all S # 0.

We prove:

Theorem 9 ([3, 2]). Let X be distribution over {0,1}". Then || X —Upy|, < bias(X) and
| X — Uy, ||, <2%?2 - bias(X).

Proof. Express X = 3. X(w)Xw. Now, X — U, = > wtd X (w)xw (Why?). Let us first bound the
{9 norm of X — U,. We have:

| X =Unly=2"X —Up, X = Up) =2" > X(w)® <2°2"(e27")? = €%,
w#D

The bound on the #; norm follows from Cauchy-Schwartz. O

In particular we see that if X has zero bias than X must be the uniform distribution.

2.2 ¢ bias and good binary error correcting codes

Definition 10. An [n,k] error correcting code C is e-balanced if the Hamming weight of every
non-zero codeword in C' is between (% - 5) n and (% + 6) n.

Claim 11. M, is a generator matriz of an [n,k|a error correcting code that is e-balanced, iff
{ri | ri is the i’th row of M} C {0, 1}k is e-biased.

Proof. Let M be a generator matrix of an [n, k] e-balanced code C. For every x € {0,1}*, Mz
contains at least (% — e) n nonzero entries and at most (% + 5) n. Hence, if we choose a row M,
of M uniformly at random, Pr,cp,[(z, M,) = 1] € [§ +¢]. It is then clear that the rows of M

constitutes an e-biased set in {0, 1}k of size n. The other direction holds as well. We leave this to
the reader. O

We are now ready to prove non-explicit existence.

Claim 12. For every k, there exists an e-biased set T C {0,1}* of size n = O(E%)



Proof. Choose the entries of A, a binary matrix of dimension n x k, uniformly at random. Fix a
nonzero z € {0,1}* and let W, be the Hamming weight of Az. That is, W, = o1 (Ai, z) where
the inner-product is modulo 2.

For a fixed non-zero z, E[W,] = & (why?). By Chernoff, the probability that Az is bad is at most

By the union bound, the probability that A is a generator matrix for an unbalanced code is at most
ok . 9 —2ne? < ok+1-2ne? 1, for n > E% O

Non-explicitly the lower bound is n = 2 ( , and the same lower bound holds for [n, k, % —€]2

k
= 10g(§)>
codes (that are not necessarily e-balanced, i.e., they may have high weight codewords).

2.3 An explicit construction

We now show a construction that achieves n = O(’;—;), due to Alon et al. [1]. The construction is
Reed-Solomon concatenated with Hadamard. Specifically, we have the following ingredients:

e The outer code: An R =[¢g = ke—l, k1,1 — ¢]; Reed-Solomon code, for ¢ that is a power of 2.

e The inner code: An H = [g,1og(q), 3]> Hadamard code.

Our code is the concatenation of the two codes, namely,

Then, the concatenated code Ro H is a [n = ¢,k = kj log g, %(1 — ¢)] linear error correcting code.
_ ki _ _k
Now, ¢ = ?1 ~ eloggq

of weight smaller than %(1 —¢). In fact, the concatenated code also does have any codewords of
length more than 3 (why?) and so we get an e-balanced code as needed.

and so n < (g)2 This shows that in the code there are no nonzero codewords

2.4 Almost k-wise independence

Definition 13. Let X be a distribution over {0,1}".

o We say X is (k,e)-biased, if it is at most e-biased with respect to all non-empty, linear tests
of size at most k.
o We say X is (k,e)-wise independent if for all S C [n] of size k, |X|g — Ug| < ¢.
Theorem 14 ([3]). There exists an explicit distribution that is (k,e)-biased over {0,1}" and has

support size at most (kl()%) .

Proof. For the construction we combine two ingredients that we already have: k-wise independence
and e-bias. Let



e A of size n x h be the generator matrix of a k-wise sample space. We saw (in Lecture 2) how
to construct A with 2" = n* (and in fact, we can even get 2" = nk/z).

e Sample b € B, where B C {0, 1}h is an e-biased sample space. We saw how to construct B

with support size (%)2 (and we mention that, in fact, we can even get support size O (E%))

The construction: Sample b € B output Ab € {0,1}".

Let S C [n] be a set of size at most k. We want to bound biasg(Ab). Let A; be the i-th row of A.
It holds that:

692'65 (Ab)l = @iGS <Ala b> = <ZA17 b> )
i€S
s0 Pryep[@iesAb; = 1] € [L £ €] because the vectors {A;}, s are linearly independent and so
> ics Ai is nonzero and B forms an e-biased distribution. The support size is ( %)2 =( klo%)? O
It therefore follows:

Corollary 15. There exists an explicit distribution that is (k,)-wise independent over {0,1}" and

2
has support size at most 2F (@) .

Proof. By Theorem 9, an (k,<’)-biased distribution is (k, e’ - 2¥/2)-wise independent. Setting &’ =
27k/2¢ we are finished. O

3 The Fourier transform as a multilinear representation

We now choose to work with the group Zy. = ({1,—1},-) instead of Zy = ({0,1},+ mod 2)
as we did so far. The two groups are isomorphic with the isomorphism v : b — (—l)b. The two
characters of Zs. are 1(x) = 1 and x(z) = x. Consequently, the characters of Z3  are [[;cq i
If we take f’ : Zjy. — C, then its Fourier representation tells us how to open f' as a multi-linear
function over C.

We can identify a boolean function f : {0,1}" — {0,1} with a function f’: {—1,1}" — {1,-1}
defined by
F(@(01), -9 (bn)) = (f(b1, .. bn)).

It turns out that the Fourier representation of f in Zj | is closely related to the Fourier represen-
tation of f’ in Z7 :

Exercise 16. Szfppose flx) =g F(S)xs(x) and f'(y) = S5 £(S) [Licsvi- Then F1(0) = 1-2£(0)
and f'(S) = =2f(S) for all S # 0.

Hint: (b) = 1 — 2b.

Thus, the Fourier expansion of f tells how f’ can be represented as a multilinear function. However,
the translation between f and f’ is linear (f = 1(1— f’)), as is the translation between the variables
(yi = 1 — 2x;) and so this also tells how f can be represented as a multilinear function over C.
Also, maxg, £(5)20 |S] is the degree of the multilinear polynomial computing f’ over C. Thus, the

Parity function f(x1,...,2,) =), x; is linear over Fo but has degree n over C.



From this discussion it is clear that the Fourier representation can help determine how close a
function on {0,1}" is to being linear, or to a low-degree multilinear function. We will see that it
also helps in unexpected places, e.g., in determining the resiliency of a function.

4 Back to resilient functions

Throughout, f is a function from {0,1}" to {0,1}, although other variants can be considered as
well. We begin by noticing that the expectation and variance of f both have simple formulas using
the Fourier coefficients:

Elf] = UJ>:<ﬂm>= F(0)
Vailf] = B -EUP = 3 f(S)

F(8)? = F0* = > f(s
S0

We already mentioned that the influence of a single variable x; is defined as the probability that
changing this variable will alter the result of the function f. We abbreviate I{,,; = I;, and note
that

L) = Prlf(@) # f(z @ e0)].

If we denote fi(z) = f(x) — f(z @ ¢;), it holds that I;(f) = Pry[fi(x) # 0]. It is then immediate
that I;(f) = E[f?].

Claim 17. f; =2 g,cs F(S)xs

Proof. For every S C [n],

fi(8) = (fisxs) = (f.xs) — 57 > fla@e)xs(a).

xG{O 13"

Denote y =x @ e;, so x =y P e; and

f(S)=(fixs) =5 O FWxswxs(e)
yE{O 13"
If i € S then ys(e;) = —1 and o+ w2y f(Wxs(y)xs(ei) = —(f,xs). Otherwise, xs(e;) = 1 and
> >y FWxs()xs(e) = (f, xs)- ThlS finished the proof. O

We can then conclude:
Corollary 18. I;(f) =4 g.cs £(9)2.

Proof. By Parseval’s theorem and our previous observations,

1i(f) =D fils)?= ) @f(5)*=4) f(5)7

SCln] S:eS S:eS



In words, the influence of a variable x; is proportional to the sum of the squares of the Fourier
coefficients related to sets that contain i.! We define the total influence of f by I(f) = > i, L(f).
We then have:

Corollary 19. I(f) = 425@[,@ f(5)2‘5‘-

Proof. By the previous observation,

n

SN =433 F92 =43 S i =43 f(5)7IS]

i=1 i=1 S:4eS SCln] i€S SC[n]

O

Now, note that I(f) =43¢ f(5)?|S] > > 540 £(8)? = Var[f], so the variance is bounded by the
total influence. We can hence conclude:

Theorem 20. For every f:{0,1}" — {0,1} there exists an i € [n] for which Ii(f) > Va:l[f].

To get to KKL’s bound of 10% - Var[f], one has to work a bit harder, and use the Bonami-Beckner
inequality.

5 Linearity testing

See Section 1.6 of Ryan O’Donnell’s book [4].
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