03683170: Expanders, Pseudorandomness and Derandomization 3/04/16

Lecture 3 – Small bias with respect to linear tests

Amnon Ta-Shma and Dean Doron

1 The Fourier expansion

1.1 Over general domains

Let G be a finite group with operation + and identity 0. Then, the group algebra $\mathbb{C}[G]$ is the set of all functions $f \in \mathbb{C}[G]$. Obviously, it is a vector space on G over the field \mathbb{C} of dimension |G|and a natural basis for $\mathbb{C}[G]$ is

$$\mathbf{1}_g(x) = \begin{cases} 1, & x = g \\ 0, & \text{otherwise} \end{cases}$$

for every $g \in G$. It is also an inner-product space under the inner product

$$\langle f_1, f_2 \rangle = \underset{x \in G}{\mathbb{E}} [f_1(x)\overline{f_2(x)}] = \frac{1}{|G|} \sum_{x \in G} f_1(x)\overline{f_2(x)},$$

and it is easy to see that the basis $\{\mathbf{1}_g\}_{g\in G}$ is an orthogonal basis under this inner product. Often, one writes g instead of $\mathbf{1}_g$ and in this notation an element $f \in \mathbb{C}[G]$ is represented as $\sum_{g\in G} a_g g$ (which is often the notation used in quantum computation).

We now introduce another basis, that contains only functions that are homomorphisms from G to \mathbb{C}^{\times} .

Definition 1. A character of the finite group G is a homomorphism $\chi : G \to \mathbb{C}^{\times}$, i.e., $\chi(x+y) = \chi(x)\chi(y)$ for every $x, y \in G$, where the addition is the group operation in G, and the multiplication is the group operation in \mathbb{C}^{\times} .

We have the following easy facts:

Claim 2. Let G be a finite group. Then:

- 1. $\chi_{\text{trivial}}(x) = 1$ for every $x \in G$ is a character. It is called the trivial character.
- 2. If χ_1 and χ_2 are characters of G then so is $\chi_1 \cdot \chi_2$ (where $\chi_1 \cdot \chi_2(x) = \chi_1(x)\chi_2(x)$).
- 3. For every character χ of G and $x \in G$, $|\chi(x)| = 1$ (the absolute norm is of course in \mathbb{C}). In particular, if we define $\overline{\chi_1}(x) = \overline{\chi_1(x)}$, then $\overline{\chi_1}$ is also a character and $\chi \cdot \overline{\chi} = \chi_{\text{trivial}}$.
- 4. This implies that $\widehat{G} = \{\chi \in \mathbb{C}[G] \mid \chi \text{ is a character}\}$ is an Abelian group, with identity as in item (1), multiplication as in item (2) and inverse as in item (3).
- 5. Let χ be a non-trivial character. Then, $\mathbb{E}[\chi] = 0$. This means that every non-trivial character is orthogonal to the trivial character.

We can then show:

Claim 3. Let G be a finite group. The set of all characters of G is orthonormal.

Proof. First, note that $\langle \chi, \chi \rangle = \mathbb{E}[|\chi|^2] = 1$. Next, take χ_1 and χ_2 be two distinct characters of G. Then, $\langle \chi_1, \chi_2 \rangle = \mathbb{E}[\chi_1 \overline{\chi_2}]$. However, $\chi_1 \overline{\chi_2}$ is itself a character, and $\chi_1 \overline{\chi_2} = \chi_1 \chi_2^{-1} \neq 1$ since they are distinct. Thus, $\mathbb{E}[\chi_1 \overline{\chi_2}] = 0$.

As a consequence, G has at most $\dim(\mathbb{C}[G]) = |G|$ characters.

We will soon see that when G is Abelian, \hat{G} has a full set of characters. The resulting orthonormal basis for $G[\mathbb{C}]$ is called the *Fourier basis*, and the linear transformation between the natural basis and the Fourier basis is called the *Fourier transform*. Thus, every $f \in G[\mathbb{C}]$ can be (uniquely) written as $f = \sum_{g \in G} \hat{f}(g) \cdot \chi_g$, and the coefficients $\hat{f}(g)$ are called the Fourier coefficients.

Let us see some examples.

For $G = \mathbb{Z}_2$, it is easy to check that $\chi_1 \equiv 1$ and $\chi_2(x) = (-1)^x$ are characters (and we know that there are no more than 2). Next consider $G = \mathbb{Z}_m$ with addition modulo m. If χ is a character, and $x \in G$, then $\chi(x)^m = \chi(mx) = \chi(0) = 1$, hence, $\chi(x)$ is an m-th root of unity. Denote $\omega = e^{\frac{2\pi i}{m}}$. For $0 \leq j < m$, define $\chi_j : \mathbb{Z}_m \to \mathbb{C}$ by $\chi_j(x) = \omega^{jx}$. It is easy to see that these are distinct characters of \mathbb{Z}_m and since we have m of them, they are all the characters and $|\widehat{G}| = |G|$.

Let $f : \mathbb{Z}_m \to \mathbb{C}$. By now, we know that its Fourier expansion is given by $f(n) = \sum_{k=0}^{m-1} \hat{f}(k) \omega^{kn}$. If we treat f and \hat{f} as vectors in \mathbb{C}^m , we get

$$f = \begin{pmatrix} \omega^{0\cdot 0} & \omega^{0\cdot 1} & \cdots & \omega^{0\cdot (m-1)} \\ \omega^{1\cdot 0} & \omega^{1\cdot 1} & \cdots & \omega^{1\cdot (m-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^{(m-1)\cdot 0} & \omega^{(m-1)\cdot 1} & \cdots & \omega^{(m-1)\cdot (m-1)} \end{pmatrix} \cdot \hat{f}$$

and the above matrix is called the Fourier matrix.

We now consider group products. Say (A, \cdot) , (B, \cdot) are two groups. A and B are not necessarily Abelian, and we denote their operation by \cdot rather than + to (somewhat) distinguish them from the Abelian case. Let $G = A \times B$ (i.e., the group operation in G is $(a_1, b_1) \cdot (a_2, b_2) = (a_1 \cdot a_2, b_2 \cdot b_2)$). For $f \in \mathbb{C}[A]$ and $g \in \mathbb{C}[B]$, define $f \otimes g \in \mathbb{C}[A \times B]$ by $(f \otimes g)(a, b) = f(a)g(b)$. Then:

Claim 4. If $f \in \widehat{A}$ and $g \in \widehat{B}$ then $f \otimes g \in \widehat{A \times B}$. Also, all pairs $f_i \otimes g_j$ for $f_i \in \widehat{A}$ and $g_j \in \widehat{B}$ are distinct.

Back to the Abelian case, we see that if A and B are finite Abelian groups than Claim 4 gives us $|A| \cdot |B| = |A \times B|$ characters, and so we have a full set of characters. As every Abelian group can be decomposed as a product of cyclic groups, we have:

Exercise 5. Let G be a finite Abelian group. Then $G \simeq \widehat{G}$.

So what are the characters of $G = \mathbb{Z}_2^n = \mathbb{Z}_2 \times \ldots \times \mathbb{Z}_2$? By the above discussion, for every $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_2^n$ we have the character

$$\chi_{\alpha}(x) = (\chi_{\alpha_1} \otimes \ldots \otimes \chi_{\alpha_n})(x_1, \ldots, x_n) = \prod_i \chi_{\alpha_i}(x_i) = \prod_i (-1)^{\alpha_i x_i} = (-1)^{\sum_i x_i \alpha_i}$$

Equivalently we could say that for every $S \subseteq [n]$ there is the character $\chi_S(x) = (-1)^{\sum_{i \in S} x_i}$. The trivial character is the character of the empty set. Parity is the character of the full set (more precisely, $(-1)^{\text{parity}}$) and every function $f : \{0, 1\}^n \to \mathbb{C}$ can be written as

$$f(a) = \sum_{S \subseteq [n]} \widehat{f}(S)\chi_S(a) = \sum_{S \subseteq [n]} \widehat{f}(S) \cdot (-1)^{\langle \mathbf{1}_S, a \rangle}.$$

We also see that the linear transformation converting the natural basis to the Fourier basis or vice versa, is the Hadamard matrix.

Also, because of the orthonormality of the characters:

Theorem 6. For any $f, f_1, f_2 : G \to \mathbb{C}$,

- $\hat{f}(S) = \langle f, \chi_S \rangle.$
- (Parseval's Theorem) $\langle f, f \rangle = \sum_{g \in G} \hat{f}(g)^2$.
- (Plancherel's Theorem) $\langle f_1, f_2 \rangle = \sum_{g \in G} \hat{f}_1(g) \hat{f}_2(g).$

For example, let us take $f: \{0,1\}^3 \to \{0,1\}$ to be the majority function. Verify that $\hat{f}(\emptyset) = \frac{1}{2}$, $\hat{f}(\{1\}) = \hat{f}(\{2\}) = \hat{f}(\{3\}) = -\frac{1}{4}$, $\hat{f}(\{1,2\}) = \hat{f}(\{1,3\}) = \hat{f}(\{2,3\}) = 0$ and $\hat{f}(\{1,2,3\}) = \frac{1}{4}$. Also, you can check that Parseval's theorem holds, as $\langle f, f \rangle = \frac{1}{2}$.

We next give an intuitive explanation on the *meaning* of these numbers.

2 ε -biased sets

A set $T \subseteq \Lambda$ ε -fools a function $f : \Lambda \to \{0, 1\}$ if $|\Pr_{x \in \Lambda}[f(x) = 1] - \Pr_{x \in T}[f(x) = 1]| \leq \varepsilon$. A set $T \varepsilon$ -fools a class of functions \mathcal{C} if it ε -fools every $f \in \mathcal{C}$. A set $T \subseteq \{0, 1\}^k$ is called ε -biased if it ε -fools all functions $f : \{0, 1\}^k \to \{0, 1\}$ that are linear over \mathbb{F}_2 . Formally:

Definition 7. Let $T \subseteq \{0,1\}^k$. For a nonzero $w \in \{0,1\}^k$ we denote

$$\mathrm{bias}_w(T) \;=\; \left|\frac{1}{2} - \Pr_{s \in T}[\langle w, s \rangle = 1]\right|.$$

The bias of T is $\operatorname{bias}(T) = \max_{w \neq 0} \operatorname{bias}_w(T)$. We say that T is ε -biased if $\operatorname{bias}(T) \leq \varepsilon$.

An ε -biased set tries to fool a class of functions using samples from a small set (in other words, we try to achieve pseudo-randomness with respect to a (very) limited class of tests). It is then natural to ask how *small* can ε -biased sets be. We shall soon answer this. But first, we interpret ε -biase using Fourier representation.

2.1 ε bias and the Fourier transform

Let X be a distribution over $\{0,1\}^n$ and $w \in \{0,1\}^n$. Then,

$$\begin{aligned} \operatorname{bias}_{w}(X) &= \left. \frac{1}{2} \left| \Pr_{s \sim X}[\langle w, s \rangle = 0] - \Pr_{s \sim X}[\langle w, s \rangle = 1] \right| &= \left| \sum_{s \in \{0,1\}^{n}} (-1)^{\langle s, w \rangle} \cdot \Pr[X = s] \right| \\ &= \left| \sum_{s \in \{0,1\}^{n}} X(s) \chi_{w}(s) \right| = 2^{n} \cdot |\langle X, \chi_{w} \rangle| = 2^{n} \cdot |\hat{X}(w)|. \end{aligned}$$

Thus, we can redefine ε bias in the Fourier language.

Definition 8. (equivalent to Def 7) Let $T \subseteq \{0,1\}^k$ and X the flat distribution over S. We say that T is ε -biased if $\hat{X}(S) \leq \varepsilon 2^{-n}$ for all $S \neq \emptyset$.

We prove:

Theorem 9 ([3, 2]). Let X be distribution over $\{0,1\}^n$. Then $||X - U_n||_2 \leq \text{bias}(X)$ and $||X - U_n||_1 \leq 2^{n/2} \cdot \text{bias}(X)$.

Proof. Express $X = \sum_{w} \hat{X}(w)\chi_{w}$. Now, $X - U_n = \sum_{w \neq \emptyset} \hat{X}(w)\chi_w$ (Why?). Let us first bound the ℓ_2 norm of $X - U_n$. We have:

$$\|X - U_n\|_2^2 = 2^n \langle X - U_n, X - U_n \rangle = 2^n \sum_{w \neq \emptyset} \hat{X}(w)^2 \le 2^n 2^n (\varepsilon 2^{-n})^2 = \varepsilon^2.$$

The bound on the ℓ_1 norm follows from Cauchy-Schwartz.

In particular we see that if X has zero bias than X must be the uniform distribution.

2.2 ε bias and good binary error correcting codes

Definition 10. An [n, k] error correcting code C is ε -balanced if the Hamming weight of every non-zero codeword in C is between $(\frac{1}{2} - \varepsilon) n$ and $(\frac{1}{2} + \varepsilon) n$.

Claim 11. $M_{n \times k}$ is a generator matrix of an $[n, k]_2$ error correcting code that is ε -balanced, iff $\{r_i \mid r_i \text{ is the } i \text{ th row of } M\} \subseteq \{0, 1\}^k$ is ε -biased.

Proof. Let M be a generator matrix of an [n, k] ε -balanced code C. For every $x \in \{0, 1\}^k$, Mx contains at least $(\frac{1}{2} - \varepsilon) n$ nonzero entries and at most $(\frac{1}{2} + \varepsilon) n$. Hence, if we choose a row M_r of M uniformly at random, $\Pr_{r \in [n]}[\langle x, M_r \rangle = 1] \in [\frac{1}{2} \pm \varepsilon]$. It is then clear that the rows of M constitutes an ε -biased set in $\{0, 1\}^k$ of size n. The other direction holds as well. We leave this to the reader.

We are now ready to prove non-explicit existence.

Claim 12. For every k, there exists an ε -biased set $T \subseteq \{0,1\}^k$ of size $n = O(\frac{k}{\varepsilon^2})$.

Proof. Choose the entries of A, a binary matrix of dimension $n \times k$, uniformly at random. Fix a nonzero $x \in \{0,1\}^k$ and let W_x be the Hamming weight of Ax. That is, $W_x = \sum_{i=1}^n \langle A_i, x \rangle$ where the inner-product is modulo 2.

For a fixed non-zero x, $\mathbb{E}[W_x] = \frac{n}{2}$ (why?). By Chernoff, the probability that Ax is bad is at most

$$\Pr\left[\left|\frac{1}{n}W_x - \frac{1}{2}\right| \ge \varepsilon\right] \le 2e^{-2n\varepsilon^2}$$

By the union bound, the probability that A is a generator matrix for an unbalanced code is at most $2^k \cdot 2e^{-2n\varepsilon^2} \le 2^{k+1-2n\varepsilon^2} < 1$, for $n \ge \frac{k}{\varepsilon^2}$.

Non-explicitly the lower bound is $n = \Omega\left(\frac{k}{\epsilon^2 \log(\frac{1}{\epsilon})}\right)$, and the same lower bound holds for $[n, k, \frac{1}{2} - \epsilon]_2$ codes (that are not necessarily ϵ -balanced, i.e., they may have high weight codewords).

2.3 An explicit construction

We now show a construction that achieves $n = O(\frac{k^2}{\varepsilon^2})$, due to Alon et al. [1]. The construction is Reed-Solomon concatenated with Hadamard. Specifically, we have the following ingredients:

- The outer code: An $R = [q = \frac{k_1}{\varepsilon}, k_1, 1 \varepsilon]_q$ Reed-Solomon code, for q that is a power of 2.
- The inner code: An $H = [q, \log(q), \frac{1}{2}]_2$ Hadamard code.

Our code is the concatenation of the two codes, namely,

$$H(R(x)_1),\ldots,H(R(x)_q).$$

Then, the concatenated code $R \circ H$ is a $[n = q^2, k = k_1 \log q, \frac{1}{2}(1 - \varepsilon)]$ linear error correcting code. Now, $q = \frac{k_1}{\varepsilon} = \frac{k}{\varepsilon \log q}$ and so $n \leq (\frac{k}{\varepsilon})^2$. This shows that in the code there are no nonzero codewords of weight smaller than $\frac{1}{2}(1 - \varepsilon)$. In fact, the concatenated code also does have any codewords of length more than $\frac{1}{2}$ (why?) and so we get an ε -balanced code as needed.

2.4 Almost k-wise independence

Definition 13. Let X be a distribution over $\{0,1\}^n$.

- We say X is (k, ε) -biased, if it is at most ε -biased with respect to all non-empty, linear tests of size at most k.
- We say X is (k, ε) -wise independent if for all $S \subseteq [n]$ of size k, $|X_{|S} U_k| \le \varepsilon$.

Theorem 14 ([3]). There exists an explicit distribution that is (k, ε) -biased over $\{0, 1\}^n$ and has support size at most $\left(\frac{k \log n}{\varepsilon}\right)^2$.

Proof. For the construction we combine two ingredients that we already have: k-wise independence and ε -bias. Let

- A of size $n \times h$ be the generator matrix of a k-wise sample space. We saw (in Lecture 2) how to construct A with $2^h = n^k$ (and in fact, we can even get $2^h = n^{k/2}$).
- Sample $b \in B$, where $B \subseteq \{0,1\}^h$ is an ε -biased sample space. We saw how to construct B with support size $\left(\frac{h}{\varepsilon}\right)^2$ (and we mention that, in fact, we can even get support size $O\left(\frac{h}{\varepsilon^2}\right)$).

The construction: Sample $b \in B$ output $Ab \in \{0, 1\}^n$.

Let $S \subseteq [n]$ be a set of size at most k. We want to bound $\operatorname{bias}_S(Ab)$. Let A_i be the *i*-th row of A. It holds that:

$$\oplus_{i\in S} (Ab)_i = \oplus_{i\in S} \langle A_i, b \rangle = \left\langle \sum_{i\in S} A_i, b \right\rangle,$$

so $\Pr_{b\in B}[\bigoplus_{i\in S}Ab_i = 1] \in [\frac{1}{2} \pm \varepsilon]$ because the vectors $\{A_i\}_{i\in S}$ are linearly independent and so $\sum_{i\in S}A_i$ is nonzero and B forms an ε -biased distribution. The support size is $(\frac{h}{\varepsilon})^2 = (\frac{k\log n}{\varepsilon})^2$. \Box

It therefore follows:

Corollary 15. There exists an explicit distribution that is (k, ε) -wise independent over $\{0, 1\}^n$ and has support size at most $2^k \left(\frac{k \log n}{\varepsilon}\right)^2$.

Proof. By Theorem 9, an (k, ε') -biased distribution is $(k, \varepsilon' \cdot 2^{k/2})$ -wise independent. Setting $\varepsilon' = 2^{-k/2}\varepsilon$, we are finished.

3 The Fourier transform as a multilinear representation

We now choose to work with the group $\mathbb{Z}_{2,\cdot} = (\{1,-1\},\cdot)$ instead of $\mathbb{Z}_{2,+} = (\{0,1\},+ \mod 2)$ as we did so far. The two groups are isomorphic with the isomorphism $\psi : b \mapsto (-1)^b$. The two characters of $\mathbb{Z}_{2,\cdot}$ are $\mathbf{1}(x) = 1$ and $\mathbf{x}(x) = x$. Consequently, the characters of $\mathbb{Z}_{2,\cdot}^n$ are $\prod_{i\in S} x_i$. If we take $f' : \mathbb{Z}_{2,\cdot}^n \to \mathbb{C}$, then its Fourier representation tells us how to open f' as a multi-linear function over \mathbb{C} .

We can identify a boolean function $f: \{0,1\}^n \to \{0,1\}$ with a function $f': \{-1,1\}^n \to \{1,-1\}$ defined by

$$f'(\psi(b_1),\ldots,\psi(b_n))=\psi(f(b_1,\ldots,b_n)).$$

It turns out that the Fourier representation of f in $\mathbb{Z}_{2,+}^n$ is closely related to the Fourier representation of f' in $\mathbb{Z}_{2,-}^n$:

Exercise 16. Suppose $f(x) = \sum_{S} \hat{f}(S)\chi_{S}(x)$ and $f'(y) = \sum_{S} \hat{f}(S)\prod_{i\in S} y_{i}$. Then $\hat{f}'(\emptyset) = 1-2\hat{f}(\emptyset)$ and $\hat{f}'(S) = -2\hat{f}(S)$ for all $S \neq \emptyset$. Hint: $\psi(b) = 1-2b$.

Thus, the Fourier expansion of f tells how f' can be represented as a multilinear function. However, the translation between f and f' is linear $(f = \frac{1}{2}(1-f'))$, as is the translation between the variables $(y_i = 1 - 2x_i)$ and so this also tells how f can be represented as a multilinear function over \mathbb{C} . Also, $\max_{S:\hat{f}(S)\neq 0} |S|$ is the degree of the multilinear polynomial computing f' over \mathbb{C} . Thus, the Parity function $f(x_1, \ldots, x_n) = \sum_i x_i$ is linear over \mathbb{F}_2 but has degree n over \mathbb{C} . From this discussion it is clear that the Fourier representation can help determine how close a function on $\{0,1\}^n$ is to being linear, or to a low-degree multilinear function. We will see that it also helps in unexpected places, e.g., in determining the resiliency of a function.

4 Back to resilient functions

Throughout, f is a function from $\{0,1\}^n$ to $\{0,1\}$, although other variants can be considered as well. We begin by noticing that the expectation and variance of f both have simple formulas using the Fourier coefficients:

$$\mathbb{E}[f] = \langle f, \mathbf{1} \rangle = \langle f, \chi_{\emptyset} \rangle = f(\emptyset)$$

$$\operatorname{Var}[f] = \mathbb{E}[f^2] - \mathbb{E}[f]^2 = \sum_{S \subseteq n} \hat{f}(S)^2 - \hat{f}(\emptyset)^2 = \sum_{S \neq \emptyset} \hat{f}(S)^2.$$

We already mentioned that the influence of a single variable x_i is defined as the probability that changing this variable will alter the result of the function f. We abbreviate $I_{\{x_i\}} = I_i$, and note that

$$I_i(f) = \Pr_x[f(x) \neq f(x \oplus e_i)].$$

If we denote $f_i(x) = f(x) - f(x \oplus e_i)$, it holds that $I_i(f) = \Pr_x[f_i(x) \neq 0]$. It is then immediate that $I_i(f) = \mathbb{E}[f_i^2]$.

Claim 17. $f_i = 2 \sum_{S:i \in S} \hat{f}(S) \chi_S$.

Proof. For every $S \subseteq [n]$,

$$\hat{f}_i(S) = \langle f_i, \chi_S \rangle = \langle f, \chi_S \rangle - \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x \oplus e_i) \chi_S(x).$$

Denote $y = x \oplus e_i$, so $x = y \oplus e_i$ and

$$\hat{f}_i(S) = \langle f, \chi_S \rangle - \frac{1}{2^n} \sum_{y \in \{0,1\}^n} f(y) \chi_S(y) \chi_S(e_i).$$

If $i \in S$ then $\chi_S(e_i) = -1$ and $\frac{1}{2^n} \sum_y f(y)\chi_S(y)\chi_S(e_i) = -\langle f, \chi_S \rangle$. Otherwise, $\chi_S(e_i) = 1$ and $\frac{1}{2^n} \sum_y f(y)\chi_S(y)\chi_S(e_i) = \langle f, \chi_S \rangle$. This finished the proof.

We can then conclude:

Corollary 18. $I_i(f) = 4 \sum_{S:i \in S} \hat{f}(S)^2$.

Proof. By Parseval's theorem and our previous observations,

$$I_i(f) = \mathbb{E}[f_i^2] = \sum_{S \subseteq [n]} \hat{f}_i(S)^2 = \sum_{S:i \in S} (2\hat{f}(S))^2 = 4 \sum_{S:i \in S} \hat{f}(S)^2.$$

In words, the influence of a variable x_i is proportional to the sum of the squares of the Fourier coefficients related to sets that contain i.¹ We define the *total influence* of f by $I(f) = \sum_{i=1}^{n} I_i(f)$. We then have:

Corollary 19. $I(f) = 4 \sum_{S \subseteq [n]} \hat{f}(S)^2 |S|.$

Proof. By the previous observation,

$$\sum_{i=1}^{n} I_i(f) = 4 \sum_{i=1}^{n} \sum_{S:i \in S} \hat{f}(S)^2 = 4 \sum_{S \subseteq [n]} \sum_{i \in S} \hat{f}(S)^2 = 4 \sum_{S \subseteq [n]} \hat{f}(S)^2 |S|.$$

Now, note that $I(f) = 4 \sum_{S} \hat{f}(S)^2 |S| \ge \sum_{S \neq \emptyset} \hat{f}(S)^2 = \operatorname{Var}[f]$, so the variance is bounded by the total influence. We can hence conclude:

Theorem 20. For every $f : \{0,1\}^n \to \{0,1\}$ there exists an $i \in [n]$ for which $I_i(f) \ge \frac{\operatorname{Var}[f]}{n}$.

To get to KKL's bound of $\frac{\log n}{n} \cdot \operatorname{Var}[f]$, one has to work a bit harder, and use the Bonami-Beckner inequality.

5 Linearity testing

See Section 1.6 of Ryan O'Donnell's book [4].

References

- Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost k-wise independent random variables. *Random Structures & Algorithms*, 3(3):289–304, 1992.
- [2] Oded Goldreich. Three xor-lemmasan exposition. In Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages 248–272. Springer, 2011.
- [3] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM journal on computing, 22(4):838–856, 1993.
- [4] Ryan O'Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

¹When normalized appropriately so that $\|\hat{f}\| = 1$, this means that the influence of *i* is proportional to the probability that $i \in S$ when we sample according to \hat{f} .