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Lecture 3 – Small bias with respect to linear tests

Amnon Ta-Shma and Dean Doron

1 The Fourier expansion

1.1 Over general domains

Let G be a finite group with operation + and identity 0. Then, the group algebra C[G] is the set
of all functions f ∈ C[G]. Obviously, it is a vector space on G over the field C of dimension |G|
and a natural basis for C[G] is

1g(x) =

{
1, x = g
0, otherwise

for every g ∈ G. It is also an inner-product space under the inner product

〈f1, f2〉 = E
x∈G

[f1(x)f2(x)] =
1

|G|
∑
x∈G

f1(x)f2(x),

and it is easy to see that the basis {1g}g∈G is an orthogonal basis under this inner product. Often,
one writes g instead of 1g and in this notation an element f ∈ C[G] is represented as

∑
g∈G agg

(which is often the notation used in quantum computation).

We now introduce another basis, that contains only functions that are homomorphisms from G to
C×.

Definition 1. A character of the finite group G is a homomorphism χ : G→ C×, i.e., χ(x+ y) =
χ(x)χ(y) for every x, y ∈ G, where the addition is the group operation in G, and the multiplication
is the group operation in C×.

We have the following easy facts:

Claim 2. Let G be a finite group. Then:

1. χtrivial(x) = 1 for every x ∈ G is a character. It is called the trivial character.

2. If χ1 and χ2 are characters of G then so is χ1 · χ2 (where χ1 · χ2(x) = χ1(x)χ2(x)).

3. For every character χ of G and x ∈ G, |χ(x)| = 1 (the absolute norm is of course in C). In
particular, if we define χ1(x) = χ1(x), then χ1 is also a character and χ · χ = χtrivial.

4. This implies that Ĝ = {χ ∈ C[G] | χ is a character} is an Abelian group, with identity as in
item (1), multiplication as in item (2) and inverse as in item (3).

5. Let χ be a non-trivial character. Then, E[χ] = 0. This means that every non-trivial character
is orthogonal to the trivial character.

We can then show:
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Claim 3. Let G be a finite group. The set of all characters of G is orthonormal.

Proof. First, note that 〈χ, χ〉 = E[|χ|2] = 1. Next, take χ1 and χ2 be two distinct characters of G.
Then, 〈χ1, χ2〉 = E[χ1χ2]. However, χ1χ2 is itself a character, and χ1χ2 = χ1χ

−1
2 6≡ 1 since they

are distinct. Thus, E[χ1χ2] = 0.

As a consequence, G has at most dim(C[G]) = |G| characters.

We will soon see that when G is Abelian, Ĝ has a full set of characters. The resulting orthonormal
basis for G[C] is called the Fourier basis, and the linear transformation between the natural basis
and the Fourier basis is called the Fourier transform. Thus, every f ∈ G[C] can be (uniquely)
written as f =

∑
g∈G f̂(g) · χg, and the coefficients f̂(g) are called the Fourier coefficients.

Let us see some examples.

For G = Z2, it is easy to check that χ1 ≡ 1 and χ2(x) = (−1)x are characters (and we know that
there are no more than 2). Next consider G = Zm with addition modulo m. If χ is a character, and

x ∈ G, then χ(x)m = χ(mx) = χ(0) = 1, hence, χ(x) is an m-th root of unity. Denote ω = e
2πi
m .

For 0 ≤ j < m, define χj : Zm → C by χj(x) = ωjx. It is easy to see that these are distinct

characters of Zm and since we have m of them, they are all the characters and |Ĝ| = |G|.
Let f : Zm → C. By now, we know that its Fourier expansion is given by f(n) =

∑m−1
k=0 f̂(k)ωkn.

If we treat f and f̂ as vectors in Cm, we get

f =


ω0·0 ω0·1 · · · ω0·(m−1)

ω1·0 ω1·1 · · · ω1·(m−1)

...
...

. . .
...

ω(m−1)·0 ω(m−1)·1 · · · ω(m−1)·(m−1)

 · f̂ ,
and the above matrix is called the Fourier matrix.

We now consider group products. Say (A, ·), (B, ·) are two groups. A and B are not necessarily
Abelian, and we denote their operation by · rather than + to (somewhat) distinguish them from
the Abelian case. Let G = A×B (i.e., the group operation in G is (a1, b1) ·(a2, b2) = (a1 ·a2, b2 ·b2)).
For f ∈ C[A] and g ∈ C[B], define f ⊗ g ∈ C[A×B] by (f ⊗ g)(a, b) = f(a)g(b). Then:

Claim 4. If f ∈ Â and g ∈ B̂ then f⊗g ∈ Â×B. Also, all pairs fi ⊗ gj for fi ∈ Â and gj ∈ B̂
are distinct.

Back to the Abelian case, we see that if A and B are finite Abelian groups than Claim 4 gives us
|A| · |B| = |A×B| characters, and so we have a full set of characters. As every Abelian group can
be decomposed as a product of cyclic groups, we have:

Exercise 5. Let G be a finite Abelian group. Then G ' Ĝ.

So what are the characters of G = Zn2 = Z2 × . . . × Z2? By the above discussion, for every
α = (α1, . . . , αn) ∈ Zn2 we have the character

χα(x) = (χα1⊗ . . .⊗χαn)(x1, . . . , xn) =
∏
i

χαi(xi) =
∏
i

(−1)αixi = (−1)
∑
i xiαi .
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Equivalently we could say that for every S ⊆ [n] there is the character χS(x) = (−1)
∑
i∈S xi . The

trivial character is the character of the empty set. Parity is the character of the full set (more
precisely, (−1)parity) and every function f : {0, 1}n → C can be written as

f(a) =
∑
S⊆[n]

f̂(S)χS(a) =
∑
S⊆[n]

f̂(S) · (−1)〈1S ,a〉.

We also see that the linear transformation converting the natural basis to the Fourier basis or vice
versa, is the Hadamard matrix.

Also, because of the orthonormality of the characters:

Theorem 6. For any f, f1, f2 : G→ C,

• f̂(S) = 〈f, χS〉.

• (Parseval’s Theorem) 〈f, f〉 =
∑

g∈G f̂(g)2.

• (Plancherel’s Theorem) 〈f1, f2〉 =
∑

g∈G f̂1(g)f̂2(g).

For example, let us take f : {0, 1}3 → {0, 1} to be the majority function. Verify that f̂(∅) = 1
2 ,

f̂({1}) = f̂({2}) = f̂({3}) = −1
4 , f̂({1, 2}) = f̂({1, 3}) = f̂({2, 3}) = 0 and f̂({1, 2, 3}) = 1

4 . Also,
you can check that Parseval’s theorem holds, as 〈f, f〉 = 1

2 .

We next give an intuitive explanation on the meaning of these numbers.

2 ε-biased sets

A set T ⊆ Λ ε-fools a function f : Λ → {0, 1} if |Prx∈Λ[f(x) = 1] − Prx∈T [f(x) = 1]| ≤ ε. A set
T ε-fools a class of functions C if it ε-fools every f ∈ C. A set T ⊆ {0, 1}k is called ε-biased if it
ε-fools all functions f : {0, 1}k → {0, 1} that are linear over F2. Formally:

Definition 7. Let T ⊆ {0, 1}k. For a nonzero w ∈ {0, 1}k we denote

biasw(T ) =

∣∣∣∣12 − Pr
s∈T

[〈w, s〉 = 1]

∣∣∣∣ .
The bias of T is bias(T ) = maxw 6=0 biasw(T ). We say that T is ε-biased if bias(T ) ≤ ε.

An ε-biased set tries to fool a class of functions using samples from a small set (in other words, we
try to achieve pseudo-randomness with respect to a (very) limited class of tests). It is then natural
to ask how small can ε-biased sets be. We shall soon answer this. But first, we interpret ε-bias
using Fourier representation.
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2.1 ε bias and the Fourier transform

Let X be a distribution over {0, 1}n and w ∈ {0, 1}n. Then,

biasw(X) =
1

2

∣∣∣∣ Pr
s∼X

[〈w, s〉 = 0]− Pr
s∼X

[〈w, s〉 = 1]

∣∣∣∣ =

∣∣∣∣∣∣
∑

s∈{0,1}n
(−1)〈s,w〉 · Pr[X = s]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

s∈{0,1}n
X(s)χw(s)

∣∣∣∣∣∣ = 2n · |〈X,χw〉| = 2n · |X̂(w)|.

Thus, we can redefine ε bias in the Fourier language.

Definition 8. (equivalent to Def 7) Let T ⊆ {0, 1}k and X the flat distribution over S. We say
that T is ε-biased if X̂(S) ≤ ε2−n for all S 6= ∅.

We prove:

Theorem 9 ([3, 2]). Let X be distribution over {0, 1}n. Then ‖X − Un ‖2 ≤ bias(X) and
‖X − Un ‖1 ≤ 2n/2 · bias(X).

Proof. Express X =
∑

w X̂(w)χw. Now, X −Un =
∑

w 6=∅ X̂(w)χw (Why?). Let us first bound the
`2 norm of X − Un. We have:

‖X − Un ‖22 = 2n〈X − Un, X − Un〉 = 2n
∑
w 6=∅

X̂(w)2 ≤ 2n2n(ε2−n)2 = ε2.

The bound on the `1 norm follows from Cauchy-Schwartz.

In particular we see that if X has zero bias than X must be the uniform distribution.

2.2 ε bias and good binary error correcting codes

Definition 10. An [n, k] error correcting code C is ε-balanced if the Hamming weight of every
non-zero codeword in C is between

(
1
2 − ε

)
n and

(
1
2 + ε

)
n.

Claim 11. Mn×k is a generator matrix of an [n, k]2 error correcting code that is ε-balanced, iff
{ri | ri is the i’th row of M} ⊆ {0, 1}k is ε-biased.

Proof. Let M be a generator matrix of an [n, k] ε-balanced code C. For every x ∈ {0, 1}k, Mx
contains at least

(
1
2 − ε

)
n nonzero entries and at most

(
1
2 + ε

)
n. Hence, if we choose a row Mr

of M uniformly at random, Prr∈[n][〈x,Mr〉 = 1] ∈ [1
2 ± ε]. It is then clear that the rows of M

constitutes an ε-biased set in {0, 1}k of size n. The other direction holds as well. We leave this to
the reader.

We are now ready to prove non-explicit existence.

Claim 12. For every k, there exists an ε-biased set T ⊆ {0, 1}k of size n = O( k
ε2

).
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Proof. Choose the entries of A, a binary matrix of dimension n × k, uniformly at random. Fix a
nonzero x ∈ {0, 1}k and let Wx be the Hamming weight of Ax. That is, Wx =

∑n
i=1〈Ai, x〉 where

the inner-product is modulo 2.

For a fixed non-zero x, E[Wx] = n
2 (why?). By Chernoff, the probability that Ax is bad is at most

Pr

[∣∣∣∣ 1nWx −
1

2

∣∣∣∣ ≥ ε] ≤ 2e−2nε2 .

By the union bound, the probability that A is a generator matrix for an unbalanced code is at most
2k · 2e−2nε2 ≤ 2k+1−2nε2 < 1, for n ≥ k

ε2
.

Non-explicitly the lower bound is n = Ω
(

k
ε2 log( 1

ε
)

)
, and the same lower bound holds for [n, k, 1

2−ε]2
codes (that are not necessarily ε-balanced, i.e., they may have high weight codewords).

2.3 An explicit construction

We now show a construction that achieves n = O(k
2

ε2
), due to Alon et al. [1]. The construction is

Reed-Solomon concatenated with Hadamard. Specifically, we have the following ingredients:

• The outer code: An R = [q = k1
ε , k1, 1− ε]q Reed-Solomon code, for q that is a power of 2.

• The inner code: An H = [q, log(q), 1
2 ]2 Hadamard code.

Our code is the concatenation of the two codes, namely,

H(R(x)1), . . . ,H(R(x)q).

Then, the concatenated code R ◦H is a [n = q2, k = k1 log q, 1
2(1− ε)] linear error correcting code.

Now, q = k1
ε = k

ε log q and so n ≤ (kε )2. This shows that in the code there are no nonzero codewords

of weight smaller than 1
2(1 − ε). In fact, the concatenated code also does have any codewords of

length more than 1
2 (why?) and so we get an ε-balanced code as needed.

2.4 Almost k-wise independence

Definition 13. Let X be a distribution over {0, 1}n.

• We say X is (k, ε)-biased, if it is at most ε-biased with respect to all non-empty, linear tests
of size at most k.

• We say X is (k, ε)-wise independent if for all S ⊆ [n] of size k, |X|S − Uk| ≤ ε.

Theorem 14 ([3]). There exists an explicit distribution that is (k, ε)-biased over {0, 1}n and has

support size at most
(
k logn
ε

)2
.

Proof. For the construction we combine two ingredients that we already have: k-wise independence
and ε-bias. Let
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• A of size n× h be the generator matrix of a k-wise sample space. We saw (in Lecture 2) how
to construct A with 2h = nk (and in fact, we can even get 2h = nk/2).

• Sample b ∈ B, where B ⊆ {0, 1}h is an ε-biased sample space. We saw how to construct B

with support size
(
h
ε

)2
(and we mention that, in fact, we can even get support size O

(
h
ε2

)
).

The construction: Sample b ∈ B output Ab ∈ {0, 1}n.

Let S ⊆ [n] be a set of size at most k. We want to bound biasS(Ab). Let Ai be the i-th row of A.
It holds that:

⊕i∈S (Ab)i = ⊕i∈S 〈Ai, b〉 =

〈∑
i∈S

Ai, b

〉
,

so Prb∈B[⊕i∈SAbi = 1] ∈ [1
2 ± ε] because the vectors {Ai}i∈S are linearly independent and so∑

i∈S Ai is nonzero and B forms an ε-biased distribution. The support size is (hε )2 = (k logn
ε )2.

It therefore follows:

Corollary 15. There exists an explicit distribution that is (k, ε)-wise independent over {0, 1}n and

has support size at most 2k
(
k logn
ε

)2
.

Proof. By Theorem 9, an (k, ε′)-biased distribution is (k, ε′ · 2k/2)-wise independent. Setting ε′ =
2−k/2ε, we are finished.

3 The Fourier transform as a multilinear representation

We now choose to work with the group Z2,· = ({1,−1} , ·) instead of Z2,+ = ({0, 1} ,+ mod 2)
as we did so far. The two groups are isomorphic with the isomorphism ψ : b 7→ (−1)b. The two
characters of Z2,· are 1(x) = 1 and x(x) = x. Consequently, the characters of Zn2,· are

∏
i∈S xi.

If we take f ′ : Zn2,· → C, then its Fourier representation tells us how to open f ′ as a multi-linear
function over C.

We can identify a boolean function f : {0, 1}n → {0, 1} with a function f ′ : {−1, 1}n → {1,−1}
defined by

f ′(ψ(b1), . . . , ψ(bn)) = ψ(f(b1, . . . , bn)).

It turns out that the Fourier representation of f in Zn2,+ is closely related to the Fourier represen-
tation of f ′ in Zn2,·:

Exercise 16. Suppose f(x) =
∑

S f̂(S)χS(x) and f ′(y) =
∑

S f̂(S)
∏
i∈S yi. Then f̂ ′(∅) = 1−2f̂(∅)

and f̂ ′(S) = −2f̂(S) for all S 6= ∅.
Hint: ψ(b) = 1− 2b.

Thus, the Fourier expansion of f tells how f ′ can be represented as a multilinear function. However,
the translation between f and f ′ is linear (f = 1

2(1−f ′)), as is the translation between the variables
(yi = 1 − 2xi) and so this also tells how f can be represented as a multilinear function over C.
Also, maxS:f̂(S) 6=0 |S| is the degree of the multilinear polynomial computing f ′ over C. Thus, the

Parity function f(x1, . . . , xn) =
∑

i xi is linear over F2 but has degree n over C.
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From this discussion it is clear that the Fourier representation can help determine how close a
function on {0, 1}n is to being linear, or to a low-degree multilinear function. We will see that it
also helps in unexpected places, e.g., in determining the resiliency of a function.

4 Back to resilient functions

Throughout, f is a function from {0, 1}n to {0, 1}, although other variants can be considered as
well. We begin by noticing that the expectation and variance of f both have simple formulas using
the Fourier coefficients:

E[f ] = 〈f,1〉 = 〈f, χ∅〉 = f̂(∅)
Var[f ] = E[f2]− E[f ]2 =

∑
S⊆n

f̂(S)2 − f̂(∅)2 =
∑
S 6=∅

f̂(S)2.

We already mentioned that the influence of a single variable xi is defined as the probability that
changing this variable will alter the result of the function f . We abbreviate I{xi} = Ii, and note
that

Ii(f) = Pr
x

[f(x) 6= f(x⊕ ei)].

If we denote fi(x) = f(x) − f(x ⊕ ei), it holds that Ii(f) = Prx[fi(x) 6= 0]. It is then immediate
that Ii(f) = E[f2

i ].

Claim 17. fi = 2
∑

S:i∈S f̂(S)χS.

Proof. For every S ⊆ [n],

f̂i(S) = 〈fi, χS〉 = 〈f, χS〉 −
1

2n

∑
x∈{0,1}n

f(x⊕ ei)χS(x).

Denote y = x⊕ ei, so x = y ⊕ ei and

f̂i(S) = 〈f, χS〉 −
1

2n

∑
y∈{0,1}n

f(y)χS(y)χS(ei).

If i ∈ S then χS(ei) = −1 and 1
2n
∑

y f(y)χS(y)χS(ei) = −〈f, χS〉. Otherwise, χS(ei) = 1 and
1

2n
∑

y f(y)χS(y)χS(ei) = 〈f, χS〉. This finished the proof.

We can then conclude:

Corollary 18. Ii(f) = 4
∑

S:i∈S f̂(S)2.

Proof. By Parseval’s theorem and our previous observations,

Ii(f) = E[f2
i ] =

∑
S⊆[n]

f̂i(S)2 =
∑
S:i∈S

(2f̂(S))2 = 4
∑
S:i∈S

f̂(S)2.
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In words, the influence of a variable xi is proportional to the sum of the squares of the Fourier
coefficients related to sets that contain i.1 We define the total influence of f by I(f) =

∑n
i=1 Ii(f).

We then have:

Corollary 19. I(f) = 4
∑

S⊆[n] f̂(S)2|S|.

Proof. By the previous observation,

n∑
i=1

Ii(f) = 4

n∑
i=1

∑
S:i∈S

f̂(S)2 = 4
∑
S⊆[n]

∑
i∈S

f̂(S)2 = 4
∑
S⊆[n]

f̂(S)2|S|.

Now, note that I(f) = 4
∑

S f̂(S)2|S| ≥
∑

S 6=∅ f̂(S)2 = Var[f ], so the variance is bounded by the
total influence. We can hence conclude:

Theorem 20. For every f : {0, 1}n → {0, 1} there exists an i ∈ [n] for which Ii(f) ≥ Var[f ]
n .

To get to KKL’s bound of logn
n ·Var[f ], one has to work a bit harder, and use the Bonami-Beckner

inequality.

5 Linearity testing

See Section 1.6 of Ryan O’Donnell’s book [4].
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