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Lecture 4 – AC0

Amnon Ta-Shma and Dean Doron

1 Boolean circuits and AC0

Definition 1. A boolean circuit is a directed acyclic graph where every input vertex (vertices of
in-degree 0) is labeled by 0, 1 or a variable, every internal vertex is a gate from {∧,∨,¬} and the
output vertices are those with out-degree 0 (the in-degree of the ∧ and ∨ gates is not restricted). A
circuit computes a boolean function in the obvious sense.

The depth of a circuit is the length of the longest path from an input to an output, and the size of a
circuit is the number of edges. A family of circuits {Cn} solves a language L if for every x ∈ {0, 1}n,
x ∈ L iff Cn(x) = 1. A family of circuits is uniform if there exists a logspace (or polynomial-time)
Turing machine that on input 1n outputs Cn.

Definition 2. A language L ∈ NCk if it can be solved by a logspace-uniform family of circuits {Cn}
such that depth(Cn) = O(logk n) and size(Cn) = poly(n) and the in-degree of every gate is at most
two. A language L ∈ ACk if it can be solved by a logspace-uniform family of circuits {Cn} such that
depth(Cn) = O(logk n), size(Cn) = poly(n) and the gates (possibly) have unbounded fan-in.

For example, parity, addition and multiplication are in NC1. Addition and boolean matrix multi-
plication are in AC0. The following inclusions hold (verify that you understand why):

NC0 ⊆ AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ L2.

Our first goal is to prove that AC0 ( NC1 and we will do that by proving Parity 6∈ AC0. This
is a rare case where we can actually prove a lower bound. In fact, we will also prove that parity
is average-case hard for AC0 circuits. Separation results were first obtained by Ajtai [1], Furst et
al. [3] culminating with H̊astad’s switching lemma (that shows that AC0 drastically shrink under
partial setting of the variables) which leads to almost optimal lower bounds [4]. A different proof
of a slightly weaker lower bound (that has its own advantages) was given later by Smolensky [7].
Linial, Mansour and Nisan [5] gave a learning algorithm for AC0. We will see Smolensky’s proof
and cite the LMN result.

We then that t-wise independence with t = polylog(n) fools AC0. Braverman proved:

Theorem 3 ([2]). t-wise independence ε-fools AC circuit of size s and depth d for

t =
(

log
s

ε

)O(d2)
.

In particular, taking d to be constant and ε = 1
poly(s) , we see that t = poly(log s) suffices.

As it turns out, most results in this section deal with how well we can represent a function as a
low-degree multilinear polynomial over the reals. The exact meaning of “representation” (exact or
approximate, worst-case or average-case) differs, but the moto is the same: functions computed by
AC0 circuits are “close” to functions that have a low-degree representation, while parity is far from
such functions.
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2 Smolensky’s proof that Parity is not in AC0

2.1 Exact/approximate, worst-case/average-case representation of a function
as a low-degree polynomial

Definition 4. Let f : {0, 1}n → {0, 1} be a function and p : Rn → R be a multi-linear polynomial.
We say that:

• p computes f on x ∈ {0, 1}n if p(x) = f(x),

• p ε–approximates f on x ∈ {0, 1}n if |p(x)− f(x)| ≤ ε,

• p computes f on average with δ–error, if Prx∈{0,1}n [p(x) = f(x)] ≥ 1− δ,

• p ε-approximates f on average with δ error if Prx∈{0,1}n [|p(x)− f(x)| ≤ ε] ≥ 1− δ.

Let us check these definitions with the OR and Parity functions. We start with exact, worst-case
computation. If p computes f on every x ∈ {0, 1}n, then p is the unique multi-linear representation
of f , and we already saw that the degree of p is the maximal cardinality of a non-zero Fourier
coefficient. Therefore, both the OR and Parity functions on n bits require full degree.

Next, we look at approximate, worst-case computation. Both the OR and Parity functions are
symmetric functions. A simple observation is:

Lemma 5. If f : {0, 1}n → {0, 1} can be worst-case, ε-approximated by a degree t polynomial
p : Rn → R, then there exists a degree t uni-variate polynomial p̃ : R → R such that p̃ (

∑
i xi)

worst-case, ε-approximates f .

The question then reduces to the following problem: Given {(i, ai)}ni=1, where ai represents the
value of f on an input with exactly i ones, what is the smallest degree t such that there is a
low degree uni-variate polynomial p of degree t for which p(i) is ε-close to ai for all i? This is a
well studied question in approximation theory. For the OR function there exists a degree O(

√
n)

polynomial that approximates OR with at most 1
3 error, and for this error the degree is tight up to

a constant factor. For the parity function a worst-case approximation with 1
3 error requires Θ(n)

degree. In general, Paturi showed:

Lemma 6 ([6]). Let f be a boolean symmetric function on n variables and let

Γ(f) = min {|2k − n+ 1| : fk 6= fk+1, 0 ≤ k ≤ n− 1}

where fi is the value of f on inputs with exactly i 1-s. Then, every polynomial that 1
3 -worst-case

approximates f is of degree Θ(
√
n(n− Γ(f))).

This completes the picture (at least for symmetric functions) of worst-case approximation, and we
see a small (quadratic) difference between the OR and the Parity functions.

We now turn to average-case, exact computation. The OR function is trivially easy, as it can be
approximated by the constant function 1. We now show that Parity is hard.

Lemma 7. If p : Rn → R computes f with average-case success 1
2 + δ, then deg(p) = Ω(δ

√
n).
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Proof. Suppose there exists a degree t polynomial that exactly computes Parity on average with
success 1

2 + δ. I.e., there exists a set A ⊆ {0, 1}n of cardinality at least
(

1
2 + δ

)
2n such that for

every x ∈ A, p(x) = Parity(x).

Consider the vector space of all functions from A to R. This vector space has dimension |A|. We
will soon show that this vector space is a subset of a vector space L containing all multi-linear
polynomials of total degree at most n

2 + t. Together this implies that

(
1

2
+ δ

)
· 2n ≤ |A| ≤

n
2

+t∑
i=0

(
n

i

)
≤ 2n

2
+

t√
n

2n,

which implies that δ ≤ t√
n

.

To see that indeed A ⊆ L = Span
{∏

i∈S xi
}
|S|≤n

2
+t

, expand f in the Fourier basis. It is enough to

show that each character (−1)〈S,a〉 is contained in L. This is clearly true for sets S of cardinality
at most n

2 . For sets S of cardinality above n
2 , χS(x) = χ1,...,1(x) · χS̄(x). χS̄(x) is represented by a

polynomial of degree at most n
2 . χ1,...,1(x) = (−1)Parity(x) = 1− 2 · Parity(x) = 1− 2 · p(x) over A,

and therefore can be represented by a degree t polynomial as desired.

This result is tight, due to [6]. Thus,

Parity Computation 1
3 -approximation

Worst-case n n

Average-case with success 2
3 Ω(

√
n) ?

Table 1: The degree needed for the Parity function

Recall that for the OR function we have:

OR Computation 1
3 -approximation

Worst-case n Θ(
√
n)

Average-case with success 2
3 1 1

Table 2: The degree needed for the OR function

2.2 Exact, worst-case, probabilistic computation

Next, we would like to extend the positive result, of low-degree average-case approximation of
the OR function, to all functions in AC0 with the intuition that any AC0 function is a low-depth
composition of OR and NOT gates, and NOT gates are trivial. However, while the OR function has
a trivial exact, average-case approximation with respect to the uniform distribution, it is not clear
how to extend the result to compositions, because the distributions appearing within the circuit
are controlled by the circuit and can be far from uniform. To handle this problem, we introduce a
new notion of exact, worst-case, probabilistic computation.

Definition 8. Let P be a class of functions. We say P ε-approximates f (worst-case and exact)
if for every x ∈ {0, 1}n Prp∈P [p(x) = f(x)] ≥ 1− ε.
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Let us first consider the OR function.

Lemma 9. For all n and ε > 0 there exists a set P of polynomials of degree O(log n log 1
ε ) that ε

computes OR.

Proof. Pick T sets S1, . . . , ST ⊆ [n] as follows: The first set is [n]. Then, for every k = 1, . . . , log n,
we pick t random subsets of cardinality 2k. Having S1, . . . , ST , define the polynomial

p(x) = 1−
T∏
j=1

1−
∑
i∈Sj

xi

 .

When x = 0 check that p(x) = 0 (i.e., we have one-sided error). When x 6= 0, the subset I(x) =
{i ∈ [n] | xi = 1} is non-empty and has cardinality q for some 2k−1 ≤ q < 2k. We claim that with
probability at least 1

8 , a random subset of [n] of cardinality n
2k

has intersection size exactly one with
I(x). When that happens the corresponding term 1 −

∑
i∈Sj

xi is zero. It follows that for every

non-zero x, with probability at least 1− 2−Ω(t), p(x) = 1 and p agrees with the or function.

Finally, clearly, deg(p) ≤ T .

In fact, instead of choosing sets (of certain cardinalities) uniformly at random, one can choose
them pair-wise independently. Specifically, each time we want to sample a set of size n

2k
, instead of

choosing a random subset of that size, we pick h uniformly at random from a two-universal family
of hash functions Hk, and let S = h−1(0). We will prove in the exercise that this also works.

The same also holds for the AND function:

Lemma 10. For all n and ε > 0 there exists a set P of polynomials of degree O(log n log 1
ε ) that ε

computes AND.

Computing NOT (exactly) by a polynomial is trivial, so we are ready to prove our main lemma for
this section.

Lemma 11. For every AC circuit C of size s and depth d there exists a set P of polynomials of
degree O((log s)2d) that ε computes OR.

Proof. Set ε = 1
4s . For every gate gi of C, pick its approximating low-degree function pi in-

dependently according to the above distribution and let p be the polynomial resulting from the
composition. By the union-bound, for every x ∈ {0, 1}n, the probability (over choosing the sub-
sets) that p does not agree with C on x is at most s · ε = 1

4 . In particular, the expectation (over
x ∈ {0, 1}n and the random choices of the subsets) of the agreement between p and C is at least 3

4 .
It follows that there exists a choice of subsets for which p agrees with C on at least 3

4 of the inputs.

Every pi has degree at most log s · log 1
ε = O(log2 s) (because the fan-in of every gate is at most s).

Also, the composition has the effect of multiplying the degrees (check). Thus, the overall degree is
O((log s)2d).

As a corollary:

Lemma 12. For every AC circuit C of size s and depth d, distribution π over {0, 1}n there exists
a function p : {0, 1}n → R of degree O((log s)2d) such that Prx∈π[C(x) = p(x)] ≥ 3

4 .
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Tracing the error more explicitly,

Lemma 13. For every AC circuit C of size s and depth d, distribution π over {0, 1}n and a > 1
there exists a function p : {0, 1}n → R of degree (a log s)d such that Prx∈π[C(x) 6= p(x)] ≤

(
3
4

)a · s.
Here, we have T ≤ a log s and |Si| ≤ s for every i ∈ [T ].

We will need another component: A function E that will tell us whether there is a mistake in p
(which happens rarely) and will also be computable in AC0 if C itself is an AC0 function. Suppose
we are given a circuit C and we prepare for some distribution π. We know that there exists a
setting of the sT sets (where T = (a log s)) that yields a polynomial p that is ε-good on average
with respect to π. Fix these sets. With these fixed sets, a non-zero boolean input to a gate is bad
if all sets intersect with the set bits that are 1 in the input with intersection size that is not 1, and
there is an easy AC0 circuit (of depth 3) checking this. Altogether, if C has depth d, we can build
a circuit of depth d+ 2 returning 1 when the input is bad. The blowup in size is at most O(sT ).

We then have:

Lemma 14. Let π be any distribution on {0, 1}n. For every AC circuit C of size s and depth d,
for any ε > 0, there is a polynomial p : {0, 1}n → R of degree at most r = (4 log s

ε log s)d and a
boolean circuit Eπ of depth d+ 2 and size at most s2r such that:

• Prx∼π[Eπ(x) = 1] ≤ ε.

• Whenever Eπ(x) = 0, p(x) = C(x).

We also note that:

Claim 15. Using the notations of Lemma 14, |p(x)| < (2s)r−2 for every x ∈ {0, 1}n.

Finally, we use the results obtained in this section to get a (mild) average-case hardness of Parity
for AC0. We have seen that every function f ∈ AC0 can be approximated well by a low-degree
polynomial. We also saw that Parity cannot be approximated by a low degree polynomial. The
obvious conclusion is that Parity is not in AC0. Moreover,

Theorem 16. Let C be an AC0 circuit. Then,

Pr
x∈{0,1}n

[C(x) = Parity(x)] ≤ 1

2
+ o(n−

1
2 ).

A tighter bound is known, which follows from H̊astad’s switching lemma:

Theorem 17 ([4]). Let C be a circuit of depth d and size 2O(n1/d). Then,

Pr
x∈{0,1}n

[C(x) = Parity(x)] ≤ 1

2
+ 2−Ω(n1/d).

3 `2 approximations

Let C be a small-depth polynomial size circuit computing a function f . f̂(S) measures the correla-
tion f has with the Parity function on the bits in S (no correlation means no bias and zero Fourier
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coefficient, while high correlation means high bias and high Fourier coefficient). Since we saw that
all small-depth polynomial size circuits have very low advantage computing Parity on many bits,
we may conclude that all Fourier coefficients f̂(S) for large cardinality sets S are small. I.e., if we
look at the vector (f̂(S))S:|S|≥k then this vector has small `∞ norm when k is large enough. The
LMN theorem extends this to the `2 norm, i.e., the sum-of-squares of the high Fourier coefficients
is very small.

Definition 18. We say that p ε-approximates f in the `2 norm if ‖ f − p ‖22 = Ex[|f(x)−p(x)|2] ≤ ε.

Linial, Mansour and Nisan proved:

Theorem 19 ([5]). Suppose f : {0, 1}n → {0, 1} is computed by an AC circuit of size s and depth
d. Then, for every t there is a degree t polynomial p with ‖ f − p ‖22 = 1

2n
∑

x |f(x) − p(x)|2 ≤
2s · 2−t1/d/20.

Notice that by Parseval ‖ f − p ‖22 =
∑

S |f̂S − p̂S |2. Also, because p has degree at most t, p̂S = 0
for all S of cardinality larger than t. On sets of smaller cardinality the best choice for p (minimizing
the sum) is choosing p̂S = f̂S . Thus, for the best p we can choose f − p is f with all small fourier
coefficients eliminated, and the theorem claims that their `2 norm is small.

For the theorem we can again recover that Parity is worst-case hard for AC0, (though, the LMN
proof itself relies on the switching lemma that already implies that). On the one hand,

Claim 20. Every polynomial p : {0, 1}n → R of degree at most n− 1 satisfies ‖ p− Parity ‖2 ≥
1
2 .

Proof. It can be verified that P̂arity(∅) = 1
2 and P̂arity([n]) = −1

2 . Now, write p(x) =
∑

S p̂(S)χS(x).
By Parseval,

‖ p− Parity ‖22 =
∑
S

| ̂p− Parity(S)|2 =
∑
S

|p̂(S)− P̂arity(S)|2.

p is of degree at most n− 1, so p̂([n]) = 0. Thus,

‖ p− Parity ‖22 =
∑
S 6=[n]

|p̂(S)− P̂arity(S)|2 +
1

4
≥ 1

4
,

as desired. In fact, this is just a concrete instantiation of the discussion after Theorem 19.

Therefore,

Corollary 21. If C is a circuit of depth d ≥ 2 and size s that computes Parity, then s = 2Ω(n1/(4d)).

Proof. Immediate by applying Theorem 19 with t = n− 1.

This bound is tight:

Exercise 22. For every constant d ≥ 2, there are circuits of size 2O(n1/(d−1)) that compute the
parity of n bits.
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Note that although E[|f(x)− p(x)|2] is small, it still might be the case that although |f(x)− p(x)|
is small in 2

3 -fraction of the inputs, it is extremely large elsewhere, and in fact this is the expected
behavior from a low-degree polynomial that is forced to be close to particular values in specific
evaluation points.

Another important thing to notice is that unlike the Smolensky’s bound, the LMN theorem gives
a good approximation of an AC0 predicate by a low-degree polynomial with respect to the uniform
distribution, and guarantees nothing with respect to other distributions.

4 Polylog-wise independence fools AC0

We saw that a distribution D is k-wise independent iff all its non-trivial Fourier coefficients D̂(S)
for sets of cardinality at most k are zero. Thus D has no correlation with low-degree polynomials.
On the other hand, every small-depth polynomial size circuit computes a boolean function that
may be approximated well by a low-degree polynomial (be it using Smolensky’s exact, average case
or LMN’s `2, average case interpretation). Thus, intuitively, we should expect D to “fool” any such
circuit.

Indeed, recall that a distribution D ε-fools a function f : {0, 1}n → {0, 1} if |Ex∼Un [f(x)] −
Ex∼D[f(x)]| ≤ ε. Take D to be any t-wise independent distribution. Braverman proves:

Theorem 23 ([2]). Any t-wise independent distribution ε-fools any AC circuit of size s and depth
d for

t =
(

log
s

ε

)O(d2)
.

In particular, taking d to be constant and ε = 1
poly(s) , we see that t = poly(log s) suffices.

A first attempt to prove this is as follows: Suppose f is computed by a depth d size s circuit and D
is some t-wise independent distribution. Then f can be approximated by a polynomial p of some
low degree t = t(d, s). But

Claim 24. If p : Rn → R is a degree t multi-linear polynomial, and D is some t-wise independent
distribution then Ex∼Un [p(x)] = Ex∼D[p(x)].

Proof. Write p(x) =
∑

I:|I|≤t aIx
I , where XI = xI11 · . . . · xInn . As D is t-wise independent we have

that Ex∼Un [xI ] = Ex∼D[xI ] for every I with |I| ≤ t. By the linearity of expectation, the claim
follows.

Hence, Ex∼D[p(x)] ≈ Ex∼Un [f(x)]. To conclude the proof we need Ex∼D[p(x)] ≈ Ex∼D[f(x)].
However, here we face a problem:

• If we use the approximation notion of `2 approximation, then proximity is guaranteed only
with respect to the uniform distribution and not with respect to D, that is potentially dis-
tributed over a very small set.

• If we use the exact, average-case approximation of Smolensky, then potentially on values on
which we err we might make a huge error, that would completely bias the approximation. To
see that notice that on an x on which we err we might get p(x) as large as s2d , and since
the probability of making an error might be 1

poly(s) , the total bias given on the wrong inputs
might be huge.
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Braverman overcome this difficulty by showing that:

Lemma 25. Let f be a boolean function computed by a depth d size s circuit. Let ε > 0 and let
D be a t-wise independent distribution for t = t(d, s, ε). Then, there exists a set of inputs E and a
degree t multi-linear polynomial p : Rn → R for which:

1. (E is small with respect to D and the uniform distribution) Prx∼Un [x ∈ E] ≤ ε, Prx∼D[x ∈
E] ≤ ε.

2. (Exact answer on No instances) For every x ∈ {0, 1}n \ E for which f(x) = 0 we have
p(x) = 0, i.e., we have one-sided error, and,

3. (p is upper bounded) For every x ∈ {0, 1}n, p(x) ≤ (f ∨E)(x) ≤ 1, where f ∨E is the boolean
function that is 1 on x iff f(x) = 1 or x ∈ E.

4. (Approximate answer in `1 norm on all instances) Ex∼Un [(f ∨ E)(x)]− Ex∼Un [p(x)] ≤ ε.

Putting it in a diagram, we have:

Ex∼Un [f(x)] Ex∼D[f(x)]x≈, item (1)

y≈, item (1)

Ex∼Un [(f ∨ E)(x)] Ex∼D[(f ∨ E)(x)]x≈, item (4)

y≥, item (3)

Ex∼Un [p(x)] ←−−−−−−−
=, Claim 24

Ex∼D[p(x)]

Formally, we claim:

Claim 26. Let f and p be as above. Then Ex∼D[f(x)] ≥ Ex∼Un [f(x)]− 3ε.

Proof. As p is of degree t, we know by Claim 24 that ED[p] = E[p]. Then:

ED[f ] ≥ ED[f ∨ E]− Prx∼D[x ∈ E]
≥ ED[f ∨ E]− ε By item (1)
≥ ED[p]− ε By item (3)
= E[p]− ε By Claim 24
= E[f ∨ E]− E[f ∨ E − p]− ε
≥ E[f ∨ E]− 2ε By item (4)
≥ E[f ]− Prx∼Un [x ∈ E]− 2ε
≥ E[f ]− 3ε. By item(1)

Applying the above claim to both f and the complement of f (that both can be computed by a
size s depth d circuit) we get

Claim 27. Let f and p be as above. Then |Ex∼D[f(x)]− Ex∼Un [f(x)]| ≤ 3ε.
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which concludes the proof.

We are left with proving Lemma 25. The proof uses a combination of Smolensky’s result together
with the LMN result.

Proof. Fix f computed by a size s and depth d circuit. Fix D, an arbitrary t-wise independent
distribution. Set π = 1

2(Un +D).

• Let pf be the polynomial guaranteed by Smolensky (Lemma 14). There exists a set E (of
suspected bad inputs) such that whenever x /∈ E, pf (x) = f(x) and

Pr
x∼π

[x ∈ E] ≤ ε

4
.

We recall the parameters guaranteed by the lemma, deg(pf ) = df = Ω
(
(log s

ε)
2d
)
.

• We overload notations and also call the AC0 circuit (of size sE = O(s2df ) and depth d+2) that
returns one exactly on elements from E. We let pE be the degree dE polynomial guaranteed
by LMN (Theorem 19) such that

‖E − PE ‖22 ≤ δ = δ(sE , d, dE).

We will chose dE later.

The way we have chosen π guarantees item (1). To see that, notice ε
2 ≥ Prx∼π[x ∈ E] ≥ 1

2 ·
max {Prx∼Un [x ∈ E],Prx∼D[x ∈ E]}.
Now, denote

p = 1− (1− pf · (1− pE))2.

If (f ∨ E)(x) = 0 then pf (x) = 0 (because x 6∈ E and pf (x) = f(x) = 0) and therefore p(x) = 0
and item (2) follows. Also, since we deduce a non-negative quantity, p(x) ≤ 1 for every x ∈ {0, 1}n.
Together, p ≤ f ∨ E and item (3) follows.

For the last item, write q = pf · (1− pE) so p = 1− (1− q)2. We claim that for every x ∈ {0, 1}n,

(f ∨ E)(x)− p(x) = ((f ∨ E)(x)− q(x))2.

To see the last equality try it for both x such that (f ∨ E)(x) = 0 which implies q(x) = 0, and x
such that (f ∨ E)(x) = 1. Thus,

E
x∼Un

[(f ∨ E)(x)− p(x)] = E
x
((f ∨ E)(x)− q(x))2

= ‖ f ∨ E − q ‖22
≤

(
‖ f ∨ E − pf (1− E) ‖2 + ‖ pf (1− E)− q ‖2

)2
≤ 2 · ‖ f ∨ E − pf (1− E) ‖22 + 2 · ‖ pf (1− E)− pf (1− pE) ‖22
≤ 2 · ‖E ‖22 + 2 · ‖ pf (E − pE) ‖22
≤ 2 · Pr

x∼π
[x ∈ E] + 2 · ‖ pf ‖2∞ · ‖E − pE ‖

2
2

≤ 2 · Pr
x∼π

[x ∈ E] + 2 · ‖ pf ‖2∞ · δ.
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Note that 2 · Prx∼π[x ∈ E] ≤ ε
2 . By Claim 15 one can choose dE =

(
log s

ε

)O(d2)
such that

‖ p ‖2∞ ≤
ε
4δ , so overall item (4) is satisfied. Finally, observe that t = deg(p) ≤ 2(df + dE) and the

proof is complete.
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