
03683170: Expanders, Pseudorandomness and Derandomization 15/05/16

Lecture 5 – List-decoding, PRGs and Extractors

Amnon Ta-Shma and Dean Doron

1 Hashing, mixing, encoding, correcting, PRGs and more...

We encounter hash functions all the time. Often we want to hash a small set in a large universe
into a smaller domain in a (sometimes almost) one-to-one way. Sometimes we do not know the
small set (but know that it is small) and still want the hashing to work. To achieve this, we need
a probabilistic algorithm and we need to accept an unavoidable, but small, probability of collision.

Sometimes, we hash the other way around. That is, we would like to start with a small set and
hash it into a larger universe so that the elements in the image are dispersed. A popular choice
is using the Hamming distance and then we get an error correcting code that guarantees that all
elements in the image (i.e., all codewords) are far apart. This in particular allows error correction
up to half the distance.

In the extraction problem we are given a small unknown set and we would like to extract randomness
from it. Let us concentrate on just outputting a single additional bit, which is the simplest task we
can ask for, yet already captures the conceptual essence of the problem. We would like to somehow
take an input from an unknown source and mix all the bits together so that wherever the entropy
was, the bits are now mixed and every bit we choose is (marginally) close to uniform.

Trevisan [7] made the striking observation that an error correcting code does exactly that. In-
tuitively, a single change in one bit between the inputs should result in two codewords that are
different all over (and maximally different when the relative distance is close to half), which in
particular implies that every output bit in the code essentially depends on almost half of the input
bits. Thus, in a sense, an error correcting bits mixes bits well!

The exact notion capturing this intuition is that of list decoding. An [n̄, n, δ]q error correcting code
C is (L, ζ) list-decodable if for every word w ∈ Fn̄q , the number of codewords of C in a ball of radius
ζ · n̄ around w is at most L.

The notion of list-decoding was proposed by Elias [1]. If we use a binary code with non-negligible
rate then its relative distance is strictly less than half and therefore we can uniquely decode less
than a quarter fraction of errors. With list decoding we can approach half! Similarly, for a larger
alphabet size, however large q is, we can never correct half errors, but with list-decoding we can
approach 1.

Of course, with list decoding the answer is often not unique. With stochastic models of error we can
almost always suffer closer and closer to the distance errors (and this was first proved by Shannon
in his famous paper). But in the adversarial model we use, the adversary can always choose w half
way between two codewords. Can there be much more? The question of whether list-decodable
codes are useful, mainly depend on how small we can guarantee L is.

A good code with a good distance has remarkable list-decoding capabilities. This is captured by
the Johnson’s bound, with which we start. Some codes (and, in particular, random codes) do much
better, and there is a beautiful chain of papers leading to remarkable explicit codes with better

1

(almost optimal) list-decoding. These works turned out also to be closely connected to explicit,
almost optimal extractors, but we will not explore this path in the course (we cover it in the
seminar, and you are all very welcome to join).

As we said before, Trevisan proved an equivalence between strong seeded extractors with just a
single output bit and list-decodable codes, and we will see that next. Trevisan then continued (in
the same paper!) to show that the NW generator is actually an extractor. An appealing property
of both constructions (strong extractor with a single output bit, and the extractor emerging from
the NW generator) is that they come equipped with a reconstruction algorithm, and we conclude
this chapter with the definition of a reconstruction extractor and its connection to PRG, and prove
Trevisan’s observation as a corollary.

2 List-decodable codes and the Johnson bound

A good place to read about the material in this section is Chapter 7 of the (online) book by
Guruswami, Rudra and Sudan [2]. Section 7.2 defines the notion of list-decoding. Section 7.3 is the
Johnson bound. Section 7.4 discusses the optimal list-decoding capacity. In class we will cover only
a subset of the material in the book and we encourage you to read the entire chapter to complete
the picture. Below we collect what we need for later on.

Definition 1. An [n̄, n, δ]q error correcting code C is (L, ζ) list-decodable if for every word w ∈ Fn̄q ,
the number of codewords of C in a ball of radius ζ · n̄ around w is at most L.

What can we hope for?

Over alphabet size q, we cannot hope to correct a fraction of over 1 − 1
q errors, because total

noise wipes all information while still leaving (w.h.p.) 1
q fraction of agreement with the original,

unspoiled codeword. Indeed, we can get as close as we want to 1
q agreement, but we pay for that

in the rate, and if we insist on being very close to 1− 1
q we pay for this also in a larger and larger

list size. Formally,

Theorem 2. Let q ≥ 2, 0 ≤ p < 1− 1
q , and ε > 0. The following holds for large enough n:

1. If R ≤ 1−Hq(p)− ε, then there exists a (p,O(ε−1)) list-decodable code with rate R,

2. If R > 1−Hq(p) + ε, every (p, L) list-decodable code with rate R has L ≥ qΩ(εn̄),

and Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x) is the entropy function.

Next, we show that distance implies decent list-decoding.

Theorem 3. If e ≤ n̄−
√
n̄(n̄− d) then any [n̄, n, d]q code is (e/n̄, qn̄d) list-decodable, for all q.

If we want to be more precise (and also give a more accurate upper bound on the list size, that is
often just a constant) we have:

Theorem 4. Let C be a [n̄, n, d]q code. If ζ < Jq(d/n̄) then C is (ζ, qdn̄) list-decodable, where

Jq(x) =

(
1− 1

q

)(
1−

√
1− qx

q − 1

)
.

Also, Jq(x) satisfies Jq(x) ≥ 1−
√

1− x ≥ x/2 for 0 ≤ x ≤ 1− 1
q .

2

We shall also use the following explicit list-decoding result:

Lemma 5. For every n and δ, there is an efficient [n̄, n, 1
2 − δ]2 code with n̄ = poly(n, δ−1) that is

(1
2 − δ, δ

−2) list-decodable.

3 The equivalence between strong extractors with one output bit
and list-decodable error-correcting codes

3.1 Strong extractors imply list-decodable codes

Let E : {0, 1}n × {0, 1}d → {0, 1} be a strong (k, ε) extractor and identify {0, 1}d with {1, . . . , D}.
Define the code

CE = {(E(x, 1), . . . , E(x,D)) | x ∈ {0, 1}n}
We prove:

Theorem 6. CE is (2k − 1, 1
2 − ε) list-decodable.

Proof. Let w ∈ {0, 1}D and let A = B(w, ε) denote the set of all codewords of CE in a ball of
radius

(
1
2 − ε

)
· n̄ around w. Further, define T : [D]×{0, 1} → {0, 1} such that T (y, b) returns 1 iff

w(y) = b.

For X ⊆ {0, 1}n denote PE,X = Y ◦ E(X,Y) where X is the flat distribution over X and Y is the
uniform distribution over [D]. Consider the distribution PE,A. It holds that

Pr[T (PE,A) = 1] =
1

|A|
∑
x̄∈A

Pr
y∼Ud

[w(y) = E(x̄, y)] >
1

|A|
∑
x̄∈A

(
1

2
+ ε

)
=

1

2
+ ε.

Thus, |PE,A − U1| > ε. As E is a (k, ε) strong extractor, it must be the case that |A| < 2k.

One can easily see that this also holds for the non-binary case. That is, if E : Fnq × {0, 1}
d → Fq is

a strong (k, ε) extractor then CE is (2k − 1, 1− 1
q − ε) list-decodable.

From the above theorem we can infer a lower-bound on the seed length of strong extractors. For
simplicity, we shall give a relaxed bound.

Theorem 7. Let E : {0, 1}n × {0, 1}d → {0, 1} be a (k, ε) strong seeded extractor where k ≤ cε2n
for a large enough constant c. Then, d ≥ log n+ 2 log 1

ε − 2.

Proof. Assume towards contradiction that E : {0, 1}n × {0, 1}d → {0, 1} is a (k, ε) strong seeded
extractor with d ≤ log(n−k) + 2 log 1

ε − 3. Thus, CE is (2k− 1, 1
2 − ε) list-decodable, [D = 2d, n, ·]2

error-correcting code. The rate of C is

R =
n

2d
> 9ε2.

We use the fact that H2(p) ≥ 1− 4(p− 1
2)2, so H2

(
1
2 − ε

)
≥ 1− 4ε2 and

R > 1−H2

(
1

2
− ε
)

+ 5ε2.

By item (2) of Theorem 2, L ≥ 2cε
2n for some constant c. By our restriction on k, 2c

′ε2n ≥ 2k and
we have a contradiction.

3

3.2 List decodable codes imply strong extractors

Let C be an (1
2 − ε, L) list-decodable [n̄, n, ·]2 code. Define EC : {0, 1}n × {0, 1}d → {0, 1} for

d = log n̄ by EC(x, y) = C(x)y. We prove:

Theorem 8. EC is a strong (k, 2ε) extractor for k = log L
ε + 1.

Proof. Assume towards contradiction that EC is not a strong (k, 2ε)-extractor, so there exists an
(n, k)-source X, so |Supp(X)| ≥ 2L

ε , and a test T : [n̄]× {0, 1} → {0, 1} such that

Pr
x∼X,y∼Ud

[T (y,E(x, y)) = 1]− Pr
y∼Ud,b∼U1

[T (y, b) = 1] > 2ε.

Hence, as we shall soon see, there exists a next-bit predictor p : {0, 1}d → {0, 1} such that

Pr
x∼X,y∼Ud

[p(y) = E(x, y)] >
1

2
+ 2ε.

By an averaging argument, there exists a set G ⊆ {0, 1}n of weight at least ε such that for every
x ∈ G, Pry∼Ud

[p(y) = E(x, y)] > 1
2 + ε.

Now, let z ∈ {0, 1}n̄ so that zi = p(i). For every x ∈ G, the Hamming distance between C(x)
and z is greater than

(
1
2 + ε

)
n̄. Hence, C(x) ∈ B(z, ε) for every x ∈ G so ε · |Supp(X)| ≤ L, in

contradiction.

A similar claim can be made for non-binary codes and extractors. Let C be a [n̄, n, (1− 1
q − ε)n̄]q

error-correcting code. Again, define EC : Fnq × {0, 1}
d → Fq for d = log n̄ by EC(x, y) = C(x)y.

Theorem 9 ([6]). EC is a strong
(

1
ε ,
√

εq
2

)
extractor.

Proof. The proof is very similar to the Leftover Hash Lemma we proved in Lecture 3. Let X ⊆ Fnq
and recall that PE,X = Y ◦ E(X,Y) where X is the flat distribution over X and Y is the uniform
distribution over [n̄]. For X of cardinality at least 1

ε , let us compute the collision probability of
PE,X :

‖PE,X ‖22 = Pr
y1,y2∼Ud

[y1 = y2] ·
(

Pr
x1,x2∼X

[x1 = x2] + Pr
x1,x2∼X,y∼Ud

[E(x1, y) = E(x2, y) | x1 6= x2]

)
=

1

n̄
·
(

1

|X |
+ Pr
x1,x2∼X,y∼Ud

[C(x1)y = C(x2)y | x1 6= x2]

)
≤ 1

n̄
·
(

1

|X |
+

1

q
+ ε

)
=

1

qn̄
·
(

1 + q

(
1

|X |
+ ε

))
≤ 1

qn̄
(1 + 2εq).

We make use of the following claim:

Claim 10. If X is a distribution such that ‖X ‖22 ≤
1

|Supp(X)|(1+4δ2) then X is δ-close to uniform.

Now, |Supp(PE,X)| ≤ qn̄, so PE,X is
√

εq
2 -close to uniform, as desired.

From the above theorem we can re-prove the Johnson bound.

4

Theorem 11. Let C be a [n̄, n, (1− 1
q − ε)n̄]q error-correcting code. Then, it is (1− 1

q − ζ,
q

4ζ2−qε)

list-decodable for every ζ > 1
2

√
εq.

Proof. By the above theorem, EC is a strong
(

1
ε ,
√

εq
2

)
extractor. Let w ∈ {0, 1}n̄ and let A =

B(w, 1− 1
q − ζ) for ζ > 1

2

√
εq. Thus:

• On one hand, by inspection of Theorem 6 we see that PE,A is ζ-far from the uniform distri-
bution.

• On the other hand, by inspection of Theorem 9 we see that PE,A is 1
2

√
q
(

1
|A| + ε

)
-close to

the uniform distribution.

Overall, |A| ≤ q
4ζ2−εq , as desired.

4 Nisan’s generator: A PRG against random AC0 circuits

4.1 Weak Designs

Definition 12 (A design [4]). A family of sets Z1, Z2, . . . , Zm ⊆ [t] is a (`, a) design if

1. For all i ∈ [t], |Zi| = `, and

2. For all i 6= j, |Zi ∩ Zj | ≤ a.

Claim 13. For every `,m there exists a (`, a = logm) design Z1, . . . , Zm ⊆ [t] where t = O(`2).

Proof. Assume w.l.o.g. that ` is a prime power. Consider the numbers in [t] as pairs of elements
in F`. I.e., identify [t] with {(x, y) | x, y ∈ F`}.
For every polynomial p ∈ F`[X] of degree at most a, define the set of all evaluations Sp =
{(x, p(x)) | x ∈ F`}. There are at least `a+1 ≥ m such polynomials, so all that is left is to ob-
serve that:

1. For every p, |Sp| = `.

2. For every p1 6= p2, |Sp1 ∩ Sp2 | ≤ a.

Therefore, every m sets from {Sp}p is a (`, a) design.

In fact, a slightly more refined notion that already suffices is of a weak design:

Definition 14 (Weak design [5]). A family of sets Z1, . . . , Zm ⊆ [t] is a weak (`, ρ) design if

1. For all i ∈ [t], |Zi| = `, and

2. For all i 6= j,
∑

j<i 2|Zi∩Zj | ≤ ρ · (m− 1).

We cite without a proof:

Lemma 15 ([5]). For every `,m and ρ > 1, there exists a weak (`, ρ) design Z1, . . . Zm ⊆ [t] with

t =
⌈

`
ln ρ

⌉
· `. Such a family can be found in time poly(m, t).

5

4.2 The NW-generator

We would like to construct a pseudo-random generator (PRG) fooling AC0. A PRG against a class
of functions F is a function G : {0, 1}` → {0, 1}n such that no function f ∈ F ε-distinguishes G(U`)
from the uniform distribution. Alternatively, one can view the uniform distribution over the set
G({0, 1}`) as a distribution with a (very small) support that is a good replacement to the completely
uniform distribution as long as the uniformity test is done by a function from the restricted class
(AC0 in our case).

Let f : {0, 1}` → {0, 1} be a boolean function that is hard on average for AC0 (although the
argument that follows can be naturally be extended to every function f that is hard on-average
for some class). Recall, for example, that Parity is such a function. Also, let S1, . . . , Sm ⊆ [t] be a
(`, 2) weak design that is guaranteed by Lemma 15. The generator G : {0, 1}t → {0, 1}m is given
by:

G(y) = f(y|S1), . . . , f(y|Sm).

We claim:

Lemma 16 ([4]). If there exists an AC circuit D : {0, 1}m → {0, 1} of size s and depth d such that
Prx∼Ut [D(G(x)) = 1] > Prx∼Um [D(x) = 1] + ε then there exists a circuit D′′ : {0, 1}` → {0, 1} of
size O(s) and depth d+ 2 that computes f successfully with probability larger than 1

2 + ε
m .

Proof. The proof begins by a hybrid argument (due to Yao [8]). As Prx∼Ut [D(G(x)) = 1] −
Prx∼Um [D(x) = 1] > ε, we can write

ε <
∑
i∈[m]

(
Pr

y∼Ut,x̄∼Um−i

[D(G(y)1,...,i, x̄) = 1]− Pr
y∼Ut,x̄∼Um−i+1

[D(G(y)1,...,i−1, x̄) = 1]

)

and there exists i ∈ [m] and a fixing of the uniform variables into D for which

Pr
y∼Ut

[D(G(y)1,...,i) = 1]− Pr
y∼Ut,x∼U1

[D(G(y)1,...,i−1, x) = 1] >
ε

m
.

Denote y = (y2, y3) to indicate that y2 ∈ {0, 1}t−` are the bits outside Si and y3 ∈ {0, 1}` are the
bits in Si. Hence, there exists a fixing of the bits outside Si so that

Pr
y∼Ȳ

[D(G(y)1,...,i) = 1]− Pr
y∼Ȳ ,x∼U1

[D(G(y)1,...,i−1, x) = 1] >
ε

m
.

where Ȳ is uniform on Si and fixed to y2 elsewhere. Fixing y2 into D, we have that

Pr
y3∼U`

[D(f(y|S1), . . . , f(y|Si−1), f(y3)) = 1]− Pr
y3∼U`,x∼U1

[D(f(y|S1), . . . , f(y|Si−1), x) = 1] >
ε

m
.

Denote D′(y3, r) = D(f(y|S1), . . . , f(y|Si−1), r), so we have

Pr
y3∼U`

[D′(y3, f(y3)) = 1]− Pr
y3∼U`,x∼U1

[D′(y3, x) = 1] >
ε

m
.

The distinguishing circuit D′ gives rise to a next-bit predictor circuit D′′ such that

Pr
y3∼U`,D′′

[D′′(y3) = f(y3)] >
1

2
+

ε

m
.

6

D′′ on input y3 picks a random bit b and computes D′(y3, b). If D′ outputs 1 then D′′ returns b
and otherwise it returns 1− b. The randomness of D′′ can be fixed. We will prove the correctness
of this procedure in the exercise.

We see that |D′′| = |D′|. What is the size of D′? We replace inputs of D with values of f on at
most

∑
j<i 2Si∩Sj ≤ ρm different inputs. Thus, |D′′| = |D| + O(ρm) = |D| + O(m) = O(|D|) and

there is only a depth 2 increase in evaluating these truth tables.

Recall that:

Theorem 17 ([3]). Let C be a circuit of depth d and size 2O(`1/d). Then,

Pr
x∼U`

[C(x) = Parity(x)] ≤ 1

2
+ 2−Ω(`1/d).

Combining this theorem with the above lemma, we obtain:

Corollary 18. G : {0, 1}t → {0, 1}m with t = 4 log4dm is a PRG against AC0 circuits of depth d
with error ε = 1

m .

Proof. By Lemma 15 we can take ` =
√
t

2 = log2dm. Assume towards contradiction that G is not
a PRG and let D be an AC circuit of size s = poly(m) and depth d which G does not ε-fool. By
Lemma 16 there exists a circuit of depth d + 2 and size s′ = poly(m) that computes Parity on `
bits with success probability larger than 1

2 + 1
m2 .

By Theorem 17, the size of D is at least 2log1.5m if 1
m2 > 2− log1.5m, which is indeed the case.

However, the size of D is only polynomial in m, in contradiction.

As another corollary, we have the following derandomization result:

Corollary 19. RAC0 ⊆
⋃
cDSPACE(logc n).

We leave its proof to the reader.

5 Reconstruction extractors and PRGs

Let us first omit details and parameters, and ignore issues of worst-case vs. average-case hardness,
an then give a rigorous and formal treatment of this material.

An efficient PRG implies an explicit function in the complexity class E that is hard for small
non-uniform circuits [4]. The converse is also true, but harder to prove. The first result of this
kind is Nisan’s generator for AC0 that we have seen (and later generalized in the Nisan-Wigderson
construction).

The NW construction and also the later improvements are black-box constructions in the following
sense: They start with an explicit function f : {0, 1}` → {0, 1} and construct from it a new function
Gf : {0, 1}t → {0, 1}m (where the notation is meant to indicate that G makes black-box oracle calls
to f) and prove that if f is hard, then Gf is a PRG.

Most importantly for us, this implication is proved by exhibiting a “reconstruction” algorithm.
Namely, the proof describes an efficient “reconstruction” oracle Turing Machine R such that for

7

every boolean function1 f : {0, 1}` → {0, 1}, if there is a small circuit C that ε-distinguishes Gf (Ut),
then there exists a short advice string z = A(f) such that RC(z, i) computes f(i). In particular
the existence of R implies:

Lemma 20 (informal, [4]). If f : {0, 1}` → {0, 1} is suitably hard then Gf is a pseudorandom
generator.

Proof. (sketch) If there is a small circuit C that ε-distinguishes Gf (Ut), then by hardwiring the
“correct” advice z = A(f), RC(z, i) is a small circuit computing f . The contrapositive then says
that if f cannot be computed by small circuits, then Gf (Ut) is a PRG.

The above result is conditional: if f is a hard function then Gf is a PRG. Trevisan showed that
reconstructive PRG are strong enough to give an unconditional extractor construction:

Lemma 21 (informal, [7]). E : {0, 1}2
`

× {0, 1}t → {0, 1}m defined by E(f, y) = Gf (y) is an
extractor.

Proof. (sketch) Let n = 2` and let X ⊆ {0, 1}n be a large subset. We identify {0, 1}n with the set of
all functions from {0, 1}` to {0, 1}. If E(X,Ut) is not close to uniform, then there exists a function
C that ε-distinguishes E(X,Ut). By averaging, we can say that C ε

2 -distinguishes E(x, Ut), for
many x ∈ X. Therefore, for many x ∈ X there exists a short advice string z = A(x) for which
RC(z, ·) outputs x. The number of strings x with such short descriptions cannot exceed the number
of possible advice strings. We conclude that if E(X,Ut) is not close to uniform, then X is small.
The contrapositive says that if X is large, then E(X,Ut) is close to uniform; in other words, E is
an extractor.

We now want to make these notions formal. We define:

Definition 22 (reconstructive PRG). Let (G,A,R) be of functions where:

• G : {0, 1}t× → {0, 1}m is called the generator function,

• A : {0, 1}2
`

→ {0, 1}a is called the advice function,

• R : {0, 1}a × {0, 1}` → {0, 1} is called the reconstruction function,

such that G = Gf and R = RC can be computed by oracle circuits, circuits that can use gates
for functions f and C, respectively. (G,A,R) is a (p, q)-reconstructive PRG if, for every f :
{0, 1}` → {0, 1} and every distinguisher C : {0, 1}m → {0, 1} that distinguishes Gf (Ut) from Um
with advantage p, we have

Pri∼{0,1}` [R
C(A(f), i) = f(i)] ≥ q.

The following two theorems formalize Lemma 20 and Lemma 21, respectively:

Theorem 23. Let (G,A,R) be a (p, q)-reconstructive PRG. Denote the depth and size of the circuit
computing R by sR = sR(a, `) and dR = dR(a, `), respectively. Let f : {0, 1}` → {0, 1} be a function
that cannot be computed on average with 1 − q error, using circuits of size s = s(`) and depth
d = d(`). Then G is a PRG against circuits C of size sC = s

sR
and depth sC = d

dR
, with error p.

1We treat a boolean function and its truth-table interchangeably.

8

Proof. Assume by way of contradiction that there exists some circuit C as above that distinguishes
G(Ut) from Um with advantage p. Let z = A(f). By Definition 22, the circuit R(z, ·) computes f
on average with 1− q error. The size and depth of R(z, ·) are at most sR · sC = s and dR · dC = d,
respectively - a contradiction.

Theorem 24. Let (G,A,R) be a (p, q) reconstructive PRG, and let n = 2`. Let E : {0, 1}n ×
{0, 1}t → {0, 1}m be defined as E(f, y) = Gf (y), where we identify the set {0, 1}n with the set of

functions f : {0, 1}` → {0, 1}. Then E is a (k, ε) extractor, where k = a+ log
(1−q)n∑
i=0

(
n
i

)
+ log 1

p + 1

and ε = 2p.

Proof. Assume by way of contradiction that E is not a (k, ε) extractor. Therefore, there is some
flat distribution X, with support of size 2k in {0, 1}n, such |E(X,Ut)− Um| > ε.

Let G be the set of elements f ∈ Supp(X) such that |E(f, Ut) − Um| > ε
2 . By an averaging

argument, we have that |G| > ε
2 · |Supp(X)| = p · 2k.

To see this in detail, consider that ε < |E(X,Ut)− Um| = |Ef∼X [E(f, Ut)− Um]|. By the triangle
inequality, |Ef∼X [E(f, Ut)− Um]| ≤ Ef∼X [|E(f, Ut)− Um|]. From the law of total expectation,

E
f∼X

[|E(f, Ut)− Um|] = E
f∼X

[|E(f, Ut)− Um||f ∈ G] Pr
f∼X

[f ∈ G] + E
f∼X

[|E(f, Ut)− Um||f /∈ G] Pr
f∼X

[f /∈ G]

≤ Pr
f∼X

[f ∈ G] +
ε

2
.

This implies that Prf∼X [f ∈ G] ≥ ε
2 . Since X is a flat distribution, we have that Prf∼X [f ∈ G] =

|G|
|Supp(X)| = |G|

2k
, and this gives us the required bound on the cardinality of G.

Now, for each f ∈ G, it holds by Definition 22 that for some z ∈ {0, 1}a, R(z, ·) computes f on
average with 1 − q error. By the (binary) Hamming bound, for every given z ∈ {0, 1}a, there

are at most
(1−q)n∑
i=0

(
n
i

)
different functions that can be computed by R(z, ·) with 1 − q error. Since

there are 2a possible values for z, we have that p · 2k ≤ |G| ≤ 2a ·
(1−q)n∑
i=0

(
n
i

)
. This implies k ≤

a+ log
(1−q)n∑
i=0

(
n
i

)
+ log 1

p , a contradiction.

In order to analyze Trevisan’s extractor, we now present a definition similar to Definition 22, but
different. Informally, instead of reconstructing a random coordinate of a given x ∈ {0, 1}n, we now
choose x randomly from a subset X, and want to reconstruct x entirely. Here we also allow the
reconstruction process to use randomness.

Definition 25 (reconstructive extractor). A triple (E,A,R) of functions where:

• E : {0, 1}n × {0, 1}rE → {0, 1}m is called the extractor function,

• A : {0, 1}n × {0, 1}rA → {0, 1}a is called the advice function, and,

• R : {0, 1}a × {0, 1}rA × {0, 1}rR → {0, 1}n is called the reconstruction function

9

is a (p, q) reconstructive extractor if for every X ⊆ {0, 1}n and every next-bit predictor T : [m] ×
{0, 1}m → {0, 1} for E(X,UrE) with advantage p, we have

Pr
x∼X,y,z

[RT (A(x, y), y, z) = x] ≥ q.

Theorem 26. If (E,A,R) as above is a (p, q) reconstructive extractor then E is a (k, ε)-extractor
for k = a+ log 1

q + 1 and ε = 2m · p.

Proof. Let (E,A,R) be a (p, q) reconstructive extractor. Assume by contradiction that E is not a
(k, ε)-extractor. Therefore, there is some flat distribution X, with support of size 2k in {0, 1}n, such
that |E(X,UrE)−Um| > ε. As we have seen, this implies the existence of a next-bit predictor T with
advantage ε

2m = p. By definition, this implies that Prx∼X,y,z[R
T (A(x, y), y, z) = x] ≥ q. Therefore,

there are some fixed y0 ∈ {0, 1}rA , z0 ∈ {0, 1}rR , such that Prx∼X [RT (A(x, y0), y0, z0) = x] ≥ q.
Since X is a flat distribution, this means there are at least q · |Supp(X)| = q ·2k elements x ∈ {0, 1}n
for which RT (A(x, y0), y0, z0) = x. Since there are only 2a possible inputs for RT (A(·, y0), y0, z0),
we have that q · 2k ≤ 2a, or equivalently k ≤ a+ log 1

q , a contradiction.

5.1 Trevisan’s extractor

We now present Trevisan’s extractor [7] and analyze its correctness using the reconstruction paradigm.

Trevisan’s extractor

Parameters : n, ε and and ρ = 2. Set δ = ε
2m .

Binary code : Let C : {0, 1}n → {0, 1}n̄ be a (1
2 − δ, δ

−2) list-decodable code guaranteed
by Lemma 5, and denote x̂ = C(x).

Weak Design : A weak (`, ρ) design Z1, . . . , Zm ⊆ [t], with:

• ` = log n̄ = O(log n
ε),

• t = `d `
ln ρe = O(log2 n

ε).

Input : x ∈ {0, 1}n, y ∈ {0, 1}t.

Output : TR(x, y) = x̂(y|Z1), . . . , x̂(y|Zm).

Lemma 27. There exists functions A and R as above such that (TR,A,R) is a (εm ,
ε3

8m3) recon-
structive extractor.

Proof. Let X ⊆ {0, 1}n be such that there exists i ∈ [m] and T : {0, 1}i−1 → {0, 1} so that

Pr
x∼X,y∼Ut,T

[T (TR(x, y)1,...,i−1) = TR(x, y)i] ≥
1

2
+

ε

m

and T uses rT bits of randomness. For y ∈ {0, 1}t, we write y = (y2, y3) to say that y is y3 ∈ {0, 1}`
on Zi and y2 ∈ {0, 1}t−` on [y] \ Zi. By an averaging argument, we have that

Pr
x∼X,y2∼Ut−`

[
Pr

y3∼U`,T
[T (TR(x, y)1,...,i−1) = TR(x, y)i] ≥

1

2
+

ε

2m

]
≥ ε

2m
.

10

Thus, there exists a set G ⊆ {0, 1}n×{0, 1}t−` of weight at least ε
2m such that for every (x, y2) ∈ G,

Pr
y3∼U`,T

[T (TR(x, y)1,...,i−1) = TR(x, y)i] ≥
1

2
+

ε

2m
.

We shall now describe A(x, y2). A contains i and the truth tables for the bits 1, . . . , i − 1, as
determined by x, i and y2. Namely, for j < i, we output all possible values for x̂(y|Zj) in the

following manner: For every v ∈ {0, 1}|Zi∩Zj |, we construct a t-bits string y that is y2 on [t] \ Zi, v
on Zi ∩ Sj and 0 elsewhere. We then project y onto Zj and apply x̂.

Given i ∈ [m], for every j < i there are 2|Zi∩Zj | rows in the truth table. As
∑

j<i 2|Zi∩Zj | ≤ 2m we
have that a, the length of A(x, y2), is 2m+ logm.

The reconstruction procedure R : {0, 1}a × {0, 1}ra × {0, 1}rA → {0, 1}n is thus given by:

The reconstruction procedure R

Input : A(x, y2) = i, {TT (i, j)}j<i and y2 ∈ {0, 1}t−`.

Random coins : A random string α ∈ {0, 1}rT and β ∈
[

4m2

ε2

]
.

Algorithm :

• For every y3 ∈ {0, 1}`,
– Use y2, y3 and TT (i, 1), . . . , T (i, i− 1) to compute x̂(y|Z1), . . . , x̂(y|Zi−1).

– Compute x̂(y|Zi) = x̂(y3) by applying T , using α for its randomness.

• Let x̃ be the reconstructed x̂ of the previous step.

• Apply list-decoding on x̃ and obtain a list L of size 4m2

ε2
.

• Use β to choose an element from L uniformly at random and output it.

Let rR = rT + log 4m2

ε2
. For (x, y2) ∈ G we have that

Pr
z∼UrR

[
RT (A(x, y2), y2, z) = x

]
≥ ε2

4m2
.

Overall,

Pr
x∼X,y2∼Ut−`

[
Pr

z∼UrR

[
RT (A(x, y2), y2, z) = x

]
≥ ε2

4m2

]
≥ ε

2m

and the correctness follows. By Theorem 26, we conclude:

Corollary 28. TR : {0, 1}n×{0, 1}t → {0, 1}m is a (2m+O(log m
ε), 2ε) extractor with seed-length

t = O(log2 n
ε).

References

[1] Peter Elias. List decoding for noisy channels. Citeseer, 1957.

11

[2] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding Theory. 2015.

[3] Johan H̊astad. Computational limitations of small-depth circuits. 1987.

[4] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System
Sciences, 49(2):149–167, 1994.

[5] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing the
error in trevisan’s extractors. In Proceedings of the thirty-first annual ACM symposium on
Theory of computing, pages 149–158. ACM, 1999.

[6] Amnon Ta-Shma and David Zuckerman. Extractor codes. Information Theory, IEEE Trans-
actions on, 50(12):3015–3025, 2004.

[7] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879,
2001.

[8] Andrew C Yao. Theory and application of trapdoor functions. In Foundations of Computer
Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 80–91. IEEE, 1982.

12

