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Lecture 6 – The Chattopadhyay-Zuckerman two-source extractor

Amnon Ta-Shma and Dean Doron

1 The construction

Our goal is to construct a two-source extractor. Let us start with a failed attempt to construct a
1-source extractor (which is bound to fail because we know there are no deterministic extractor for
k1-sources, even for k1 as as large as n1 − 1).

Let X1 be a k1-source over {0, 1}n1 . Take any strong, one output bit extractor E : {0, 1}n1 ×
{0, 1}d1 → {0, 1}. E is a seeded extractor and requires randomness which we don’t have. However,
we may still compute a D1 × 1 table T , with D1 = 2d1 rows, where in the i-th row we write the
bit E(x1, i). I.e., we unfold E and write down all the choices E would have made had it had the
randomness it requires. We know that almost all the rows in the table are close to uniform, namely,
all rows except maybe a

√
ε fraction are

√
ε-close to uniform.

Now take a resilient function f : {0, 1}D1 → {0, 1} and apply it on the table T . We can think of
the good rows as good players outputting random bits, and the bad rows as bad players outputting
bits that are adversarially correlated with the good bits. Still, the number of bad players is small
and the resilient function is deterministic and knows how to handle malicious players, so we may
hope to indeed ensure the output bit is close to uniform.

To summarize, we wold like to output f(E(x1, 1), . . . , E(x1, D1)) and use the strong extractor and
the resilient function properties to argue that the output bit is close to uniform.

The approach of course fails, and for two reasons:

1. It is true that each good row in the table is marginally distributed close to uniform. However,
the good rows in the table are potentially correlated, e.g., the same bit may repeat in all the
good rows. In fact, clearly, the entropy in the output cannot exceed that of the input, and
since D1 � n1 ≥ k1, we must have many correlations among the good rows.

2. The number of bad players is quite large. Specifically, if, say, ε is a constant, then there is
a constant fraction of bad players, whereas by KKL a resilient function can tolerate at most

Θ
(

D1
logD1

)
bad players.

Let us look at the first problem. Suppose we could guarantee that the good players are t-wise
independent for some small (but super-constant) t. Further suppose that f can be computed by an
AC0 circuit of depth d. Then, Braverman’s theorem tells us that f is fooled by t-wise independence
(for t large enough), i.e., f cannot distinguish between the t-wise independent distribution and the
actual distribution (except for a small loss).This means that for the analysis of how f behaves on
the input, we can assume (for a small penalty) that all the good rows are independent. Thus, we
expect our first problem to be solved! Of course we need to show such an extractor exists, but
for the moment let us assume it does (and indeed it does and we will name it a t-non-malleable
extractor) and go on with the construction.
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The above argument is almost correct except for an annoying bug: The distribution we feed to f is
(almost) t-wise independent on the good rows and not truly uniform. The solution here is simple
and elegant (as the whole construction!). We use a function f that is also monotone. The strategy
for the bad players is then immediate and independent of the good rows: Vote 1 if you wish to bias
the result to 1, vote 0 if you wish to bias it to 0. Thus, the indicator function of whether the bad
players can bias the result is itself an AC0 circuit and we can again use Braverman’s result.

We keep requiring more from our resilient function f , so we should now wonder whether such a
resilient function exists at all, namely, a monotone resilient function that is computed by a small-
depth circuit. The Tribes function, for instance, is monotone, in AC0 and optimally resilient against
one bad player, but it has very poor resiliency against a coalition of players. Remarkably, there
exists an f that can sustain all the above requirements, and we use this fact as a black box without
a proof. Thus, remarkably, using such a resilient function solves the first problem.

So far we are still working with just a single source. Indeed, we still face the second problem. The
construction is going to use the second source to improve the fraction of bad players among all
players, making the whole approach viable. The way this is done is by using the second source to
sample the rows of the table T , getting a smaller number of rows with about the same fraction
δ =

√
ε of bad players. To see that this improves things, assume we started with δD1 bad rows

out of the D1 rows for some constant δ. Assume we sample a set of size D2 = poly(1
δ ) (specifically,

say D2 = (1
δ )c for some constant c) with about 2δ fraction of bad players. The fraction of the

bad players before the sampling is a constant which is too bad for us, while the fraction after the

sampling is about
2Dc−1

2
Dc2

= D1−α
2 for some α > 0, which is tolerable by good resilient functions!

How are we going to do the sampling? We already know the answer. Sampling is almost equivalent
to extracting. So, we take an extractor F with δ error. We need to sample from {0, 1}d1 , so this
is the range of the extractor F . In the range there are good elements (that correspond to good
rows of T , or equivalently, good seeds of E). The fraction of bad elements is δ. The domain of F
is (slightly) larger to ensure almost all elements in the domain have about the right fraction δ of
good neighbors. So take

F : {0, 1}n2 × [D2]→ {0, 1}d1

that is a (k2, δ) strong extractor (for k2 > d1 as small as we can support). Use the element x2 from
the second source to define the sample set

{F (x2, 1), . . . , F (x2, D2)}

and apply the resilient function f on it, i.e., output

f(E(x1, F (x2, 1)), . . . , E(x1, F (x2, D2))).

We still need to formally define a t-non-malleable extractor.

Definition 1. Fix a function E : {0, 1}n × [D] → {0, 1}m and a source X on {0, 1}n. The table
T = T (E,X) is a D × m table, where the i-th row of T (for i ∈ [D]) contains the distribution
E(X, i).

Definition 2. A function E : {0, 1}n × [D] → {0, 1}m is a (k, t, ε)-non-malleable strong extractor
if for every (n, k)-source X, the D ×m table T (E,X) has at least (1− ε)D rows that are (t, t · ε)-
independent.
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Notice that when t = 1 we recover (a variant) of the familiar strong extractors. The two-source
extractor of Chattopadhyay and Zuckerman then does the following:

Input : x1 ∈ {0, 1}n1 sampled from a k1-source, x2 ∈ {0, 1}n2 sampled from a k2-source.

The objects we use : We need a t-non-malleable strong extractor with one output bit E, a
strong extractor F and a resilient function f . Specifically,

• E : {0, 1}n1 ×{0, 1}d1 → {0, 1} that is a (k1, t, ε) non-malleable, strong extractor, where
t ≥ logc n for some constant c to be determined.

• F : {0, 1}n2 × {0, 1}d2 → {0, 1}d1 that is a (k2, δ) extractor, d2 = O(log n2
δ ) and δ to be

determined.

• f : {0, 1}D2 → {0, 1} for D2 = 2d2 , a (t, γ)-independent (q, δ)-resilient, monotone func-
tion that is computed by a depth 4 AC0 circuit.

The construction : Output

EXT (x1, x2) = f(E(x1, F (x2, 1)), . . . , E(x1, F (x2, D2))).

2 The correctness proof (assuming the components)

2.1 Facts about f

Recall that a distribution D is called (t, γ) independent distribution if the restriction of D to every t
coordinates is γ-close to Ut. We extend the notions of non-oblivious bit-fixing sources and resilient
functions.

Definition 3. A source X over {0, 1}n is called a (q, t, γ) non-oblivious bit-fixing source if there
exists a subset Q ⊆ [n] of size at most q such that the joint distribution of the bits in Q\ [n] is (t, γ)
independent. The bits in Q are allowed to arbitrarily depends on the bits in Q \ [n].

Definition 4. For a distribution D and Q ⊆ [n] we let IQ,D(f) denote the probability that f is
underdetermined when the variables outside Q are sampled from D. We define Iq,t,γ(f) to the
maximum of IQ,D(f) over all Q ⊆ [n] of size q and all D that is a (t, γ) independent distribution.

We say that f is (t, γ)-independent (q, ε)-resilient if Iq,t,γ(f) ≤ ε.

The guarantee on our f is given by the following theorem:

Theorem 5. For any δ > 0 and large enough integer n there exists an explicit boolean function
f : {0, 1}n → {0, 1} satisfying:

• f is a depth 4 circuit of size nO(1).

• |Ex∼Un [f(x)]− 1/2| ≤ 1
nΩ(1) .

• For any q > 0, Iq(f) ≤ q
n1−δ .

We will soon prove that that the above result also holds for (t, γ) independent distributions.
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2.2 Facts about F

F will be an optimal strong seeded-extractor – the GUV extractor [2].

Theorem 6. For any ε > 0, any constant α > 0 and all integers n, k > 0 there exists an explicit
strong (k, ε) seeded-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n

ε ) and m = (1−α)k.

Further, for all x ∈ {0, 1}n, Ext(x, s1) 6= Ext(x, s2) whenever s1 6= s2.

We will also use the fact that every extractor is a good sampler. Formally:

Claim 7. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) seeded extractor. Identify {0, 1}d with
1, . . . , D where D = 2d. Define Samp(x) = {Ext(x, 1), . . . , Ext(x,D)}. Let X be an (n, 2k)-source.
Then, for any R ⊆ {0, 1}m,

Pr
x∼X

[||Samp(x) ∩R| − µRD| > εD] < 2−k,

where µR = |R|/2m.

2.3 Facts about E

We will use the following non-malleable extractor by Chattopadhyay, Goyal and Li [1].

Theorem 8. There exists a constant c > 0 such that for all n, t > 0 there exists an explicit
(t, k, ε) non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}, where k ≥ ct log2 n

ε and d =
O(t2 log2 n

ε ).

2.4 Reducing to a bit-fixing extractor (resolving issue I)

Denote
S(x1, x2) = E(x1, F (x2, 1)), . . . , E(x1, F (x2, D2)),

so EXT (x1, x2) = f(S(x1, x2)). Continuing with our previous notations, we prove:

Lemma 9. There exists a constant 0 < α < 1 such that with probability at least 1 − n−ω(1)
1 over

x2 ∼ X2, S(X1, x2) is a (q, t, γ) non-oblivious bit-fixing source, where q = D1−α
2 and γ = 1

Dt+1
2

.

Proof. Let Samp(x2) = {F (x2, 1), . . . , F (x2, D2)} and let M be the set of good seeds of E (respec-
tively, indices of good rows of T (E, x1)). Note that all elements in Samp(x2) are distinct. By the
properties of E, |M | ≥ (1− ε)D1. By the extractor’s sampling property (Claim 7),

Pr
x2∼X2

[|Samp(x2) ∩M | − (1− ε)D2 < −δD2] < 2−k2/2.

Thus, with probability at least 1− 2−k2/2, Samp(x2) contains at least (1− ε− δ)D2 good seeds.

Fix such x2 and let Zx2 = S(X1, x2). The bits corresponding to good rows are (t, ε · t)-independent
and there are at most (ε+ δ)D2 “malicious” bits, so Zx2 is a (q = (ε+ δ)D2, t, t · ε) non-oblivious
bit-fixing source.

We choose ε, δ and the exctractors’ constants such that (ε + δ)D2 ≤ D1−α
2 for some constant

α and t · ε ≤ 1
Dt+1

2

. Specifically, we need to take δ = poly(n−1
2 ) and ε = poly(n−t1 ), observing

that D2 = poly(n2), E works for min-entropy k1 = polylog(n1) and F works for min-entropy
k2 = O(D1) = polylog(n1) as well.
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2.5 A bit-fixing extractor for (t, γ) independence (resolving issue II)

We prove:

Lemma 10. Let C : {0, 1}n → {0, 1} be a monotone AC0 circuit of depth d and size s such that
|Ex∼Un [C(x)]− 1

2 | ≤ ζ1. Suppose q > 0 is such that Iq(C) ≤ ζ2 and let t = poly((log s
ζ3

)d
2
) that is

guaranteed by Braverman’s result for fooling depth d+ 5 circuits of size 3s+ 6 with ζ3 error. Then,

• For any distribution D that is (t, γ) independent, |Ex∼D[C(x)]− 1
2 | ≤ ζ1 + ζ3 + γnt.

• Iq,t(C) ≤ ζ2 + ζ3 and Iq,t,γ(C) ≤ ζ2 + ζ3 + γnt.

Proof. Item (1) follows directly from Braverman’s result and the fact that D is ntγ-close to a t-wise
independent distribution – a fact we proved in the exercise.

For the second item, let Q be any set of indices, and let Q̄ = Q\ [n]. We construct EQ : {0, 1}n−q →
{0, 1} such that E(y) = 1 iff C is underdetermined when Q̄ is set to y. How do we do that? Let C0

and C1 be the circuits obtained from C by fixing the bits in Q to 0 and 1, correspondingly. Define
EQ = (C0 6= C1). Verify to yourself that this indeed satisfies the requirement, as C is monotone.
Also, EQ is an AC0 circuit of depth d+ 5 and size at most 3s+ 6.

Having EQ, it follows that

E
y∼Un−q

[EQ(y)] = Pr
y∼Un−q

[EQ(y) = 1] ≤ Iq(C) ≤ ζ2.

Let D be any t-wise independent distribution over n − q bits. Similarly, Ey∼D[EQ(y)] ≤ Iq,t(C).
Thus, to prove that Iq,t(C) ≤ ζ2+ζ3 it is enough to prove that |Ey∼Un−q [EQ(y)]−Ey∼D[EQ(y)]| ≤ ζ3,
which follows directly from Braverman’s result. The fact that Iq,t,γ(C) ≤ ζ2 +ζ3 +γnt again follows
from the exercise.

In light of Lemma 10 and Theorem 5, we can infer:

Theorem 11. There exists a constant c such that for any δ > 0 and every large enough integer
n there exists an explicit boolean function f : {0, 1}n → {0, 1} satisfying: For every q > 0, t ≥
c(log n)18 and γ < 1

nt+1 ,

• f is a depth 4 circuit of size nO(1).

• For any (t, γ)-wise independent distribution D, |Ex∼D[f(x)]− 1/2| ≤ 1
nΩ(1) .

• Iq,t,γ(f) ≤ q
n1−δ .

2.6 Putting it together

For the simplicity of presentation, let us assume n1 = n2 = n and k1 = k2 = k. We are now ready
to prove:

Theorem 12. There exists a constant c > 0 such that EXT : {0, 1}n × {0, 1}n → {0, 1} is a
two-source extractor for min-entropy at least logc n and error n−Ω(1).
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Proof. Recall that EXT (x1, x2) = f(S(x1, x2)). Let X1 and X2 two independent (n, k) sources.
By Lemma 9, with probability at least 1 − n−ω(1) over x2, S(X1, x2) is a (q, t, γ) non-oblivious
bit-fixing source for q = D1−α

2 , t = polylog(n) and γ ≤ 1
Dt+1

2

.Thus, by Theorem 11, for each such

good x2,

|f(S(X1, x2))− U1| ≤
1

nΩ(1)
.

Thus, we have that

|E(X1, X2)− U1| = |f(S(X1, X2))− U1| ≤
1

nω(1)
+

1

nΩ(1)
=

1

nΩ(1)
,

as required.

3 A closer look at the components

non-malleable - we want to do. separate section. We need to understand it first.

resilient.
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