03683170: Expanders, Pseudorandomness and Derandomization 15/06/16

Take-home exam

Amnon Ta-Shma and Dean Doron

General instructions:

- 1. The deadline for the exam is 17/07/16.
- 2. Submit your (typed) solution by mail to amnon@tau.ac.il and deandoron@mail.tau.ac.il.
- 3. Using electronic sources is allowed, but the work must be done alone. Please sign the attached statement that you indeed did it alone.
- 4. Many questions are based on published papers. We do not give the due credit, because we want to encourage you to try it yourself. If you want to get a hint, send us an email.
- 5. Try to solve all questions. The final grade will be normalized, and everyone who has done decent work will get a decent grade, with those who solved more getting a higher grade. So don't be discouraged if you don't solve all exercises. Sometimes, it is possible to solve parts of a question assuming the correctness of the previous parts.
- 6. If you find a mistake (or a typo), or you have a suggestion that may benefit others, please let us know as soon as possible.
- 7. You have a month, use it!
- 8. Enjoy!

1 Improving Braverman's result

1.1 (α, β) majority – Amplifying gaps

Definition 1 (The (α, β) -MAJ promise problem). The input to the promise problem is $x \in \{0, 1\}^n$. The YES instances are all $x \in \{0, 1\}^n$ such that $\sum x_i > \beta n$. The NO instances are all $x \in \{0, 1\}^n$ such that $\sum x_i \leq \alpha n$.

Although $(\frac{1}{2}, \frac{1}{2})$ -MAJ is hard for AC⁰ (we proved it in the exercise), prove that:

Question 1.1. For all constants $0 \le \alpha < \beta < 1$ and large enough n, there exist constant c, d such that (α, β) -MAJ has an AC circuit with size n^c and depth d.

What is the constant d you have found?

Hint: Find a probabilistic algorithm with error probability smaller than the number of inputs. Use alternate steps of powering and negation.

1.2 Amplifying the success of a distribution

We repeat a definition we gave in class.

Definition 2. Let $f : \{0,1\}^n \to \{0,1\}$ and P a distribution over real polynomials. We say:

- $P \in \text{-approximates } f$ (worst-case and exact) if for every $x \in \{0,1\}^n$, $\Pr_{p \in P}[p(x) = f(x)] \ge 1 \varepsilon$,
- We say $||P||_{\infty} \leq L$ if for every $p \in P$, $\max_{a \in \{0,1\}^n} |p(a)| \leq L$,
- We say P has degree D if every $p \in P$ has degree at most D.

Prove:

Question 1.2. Suppose $P(\frac{1}{2} - \delta)$ -approximates $f: \{0,1\}^n \to \{0,1\}$, has degree D and norm $L \geq 2$. Then, there exists a distribution P' that ε -approximates f, has degree at most $O(\frac{D}{\delta^2} \log \frac{1}{\varepsilon})$ and norm at most $L^{O(\frac{1}{\delta^2} \log \frac{1}{\varepsilon})}$.

1.3 Amplifying the success of the error detector

In the lecture we proved:

Theorem 3. Fix $\varepsilon > 0$. Any AC circuit C of size s and depth d has a distribution P over real polynomials such that:

- The degree of P is at most $(\log \frac{s}{c})^{O(d)}$.
- The norm of P is at most $2^{(\log \frac{s}{\varepsilon})^{O(d)}}$.
- For every $p \in P$ there exists an "error-detecting" circuit E_p such that:

- E_p has size poly $(s \log \frac{1}{\varepsilon})$ and depth d + O(1),
- (Small error) For every $a \in \{0,1\}^n$, $\Pr_p[E_p(a) = 1] \le \varepsilon$, and,
- (One-sided error) For every $a \in \{0,1\}^n$, whenever $E_p(a) = 0$, p(a) = C(a).

Improve the above theorem and prove that:

Question 1.3. Fix $\varepsilon > 0$. Any AC circuit C of size s and depth d has a distribution P over real polynomials such that:

- The degree of P is at most $(\log s)^{O(d)} \log(\frac{1}{\epsilon})$.
- The norm of P is at most $(\frac{1}{\varepsilon})^{(\log s)^{O(d)}}$.
- For every $p \in P$ there exists an "error-detecting" circuit E_p such that:
 - E_p has size poly $(s \log \frac{1}{\varepsilon})$ and depth d + O(1),
 - (Small error) For every $a \in \{0,1\}^n$, $\Pr_p[E_p(a) = 1] \le \varepsilon$, and,
 - (One-sided error) For every $a \in \{0,1\}^n$, whenever $E_p(a) = 0$, p(a) = C(a).

Using this result,

Question 1.4. Re-prove Braverman's result that $t = t(s, d, \varepsilon)$ -wise independence ε -fools AC circuits of size s and depth d, but improve the dependence t has on ε .

2 Derandomizing the Ajtai-Linial function

Ajtai and Linial proved:

Theorem 4. There exists an almost balanced boolean function f on n variables such that for every $\varepsilon > 0$, it holds that $I_q(f) = O(\varepsilon)$ for $q = \frac{\varepsilon n}{\log^2 n}$.

The Ajtai-Linial construction is both non-explicit and non-monotone. Chattopadhyay and Zuckerman de-randomized the construction and made it *explicit* and also constructed a function f that is *monotone*, while keeping it in AC⁰. Their construction works for $q = n^{1-\alpha}$ (for every fixed constant $\alpha > 0$). Here, we will present the construction, and do part of the analysis.

Specifically, we will show that if the good players are Bernoulli p (i.e., each good player picks 1 with probability p and the good players are independent) then for every coalition of size q, the probability the coalition can influence the result is small. We will not show:

- How to move to the uniform distribution (i.e., Bernoulli p = 1/2), and,
- How to show that the function is almost balanced (which requires new ideas).

We start with the construction. Let [M] be some universe, for M that will be determined later. Take a strong $(k = ?, \varepsilon = ?)$ extractor $E : [R] \times [B] \rightarrow [M]$ such that $n = B \cdot M$, for parameters that you will have to choose later.

Question 2.1. Prove that for every $v \in [R]$, the sets $\{(j, E(v, j) \oplus w) \mid j \in [B]\}_{w \in [M]}$ form a partition of [n].

Fix $v \in [R]$. We will say the set

$$P_w^v = \left\{ x_{j, E(v, j) \oplus w} \mid j \in [B] \right\},$$

for $w \in [M]$, is the *w*-th tribe of *v*. We let $f_v : \{0,1\}^n \to \{0,1\}$ be the Tribes function for the above partition, i.e.,

$$f_v(x_1,\ldots,x_n) = \bigvee_{w \in [M]} \bigwedge_{j \in [B]} x_{j,E(v,j) \oplus w}.$$

We define $f : \{0, 1\}^n \to \{0, 1\}$ by

$$f(x_1,\ldots,x_n) \stackrel{\text{def}}{=} \bigwedge_{v \in [R]} f_v(x_1,\ldots,x_n)$$

As always, we say that the (good players) leave f undetermined if the malicious players can set the function to either zero or one after the good players set their values. We say that f is set to 1 (or 0) if any completion of the good players results in f being 1 (or 0).

Question 2.2. Fix $v \in [R]$. Say a tribe of v is good if all the variables in it are good, and bad otherwise. Assume the good players have chosen their values some way. Prove that if f_v is undetermined then:

- 1. In every good tribe of v there is a player that voted 0, and,
- 2. There exists a bad tribe of v in which all the good players voted 1.

Let GT(v) denote the number of good tribes of v and BT(v) the number of bad tribes of v. Prove:

Question 2.3.

- 1. For every v, the probability (over the votes of the good players) that f_v is not set to 1 is exactly $(1-p^B)^{GT(v)}$.
- 2. There exists a set $BV \subseteq [R]$ of cardinality at most $2^k M$ such that for every $v \notin BV$, the probability (over the votes of the good players) that f_v is undetermined is at most $BT(v) \cdot p^{(1-2\varepsilon)B}$.
- 3. The probability that f is undetermined is at most $2^k M(1-p^B)^{M-q} + q \cdot p^{(1-2\varepsilon)B}$.

Set the parameters R, B, M, k, ε and p in order to prove:

Question 2.4. For any $\delta > 0$, and every large enough integer n, there exists a polynomial time computable monotone, balanced boolean function $f : \{0,1\}^n \to \{0,1\}$ satisfying:

- f is a depth 4 circuit of size $n^{O(1)}$.
- For any q > 0, $I_q(f) \le \frac{q}{n^{1-\delta}}$ where the good players are Bernoulli p.

You may assume you have the best non-explicit extractor.

3 Leader election

Question 3.1. We describe the baton passing game. The game starts with player number 1 holding the baton. Every player is supposed to choose uniformly at random a player that has not received the baton yet and pass it to him. The elected leader is the player who receives the baton last.

The adversarial model: The adversary may corrupt q players of his choice. He also chooses the first player. Bad players play arbitrarily, may collude, and may base their actions on previous history.

- Find the optimal strategy for the adversary, and prove it is optimal.
- Prove the probability the leader is bad is a function of only:
 - The number of good and bad players,
 - Whether the player holding the baton at the first stage is bad or not.
- Prove that for any adversary, the probability (over the good players' coin tosses) that the leader is bad is $O(\frac{q \log q}{s})$, where q is the number of bad players and s the number of good players.

Question 3.2. Solve question 6 in the questions pool.

4 A two-source extractor from ε -biased sample spaces

We recall the definition we gave in class:

Definition 5. Let X be a distribution over $\{0,1\}^n$. We say X is (k,ε) -biased, if it is at most ε -biased with respect to all non-empty, linear tests of size at most k.

Recall, that we have proved:

Theorem 6. There exists an explicit distribution that is (k, ε) -biased over $\{0, 1\}^n$ and has support size at most $\left(\frac{k \log n}{\varepsilon}\right)^2$.

We now give a two-source extractor construction. We use the first source to sample a row from a (k, ε) biased distribution, and the second source to sample bits from it. Specifically, fix n_1, n_2, k_1, k_2, m, k and ε such that n_1 is the number of bits required to construct a (km, ε) biased sample space with mN_2 variables $(N_2 = 2^{n_2})$. We also assume km is even. Define $E: \{0, 1\}^{n_1} \times \{0, 1\}^{n_2} \to \{0, 1\}^m$ by:

- Use $x_1 \in \{0,1\}^{n_1}$ to sample $Z(x) = Z = (Z_{1,1}, \dots, Z_{i,j}, \dots, Z_{m,N_2})$ from the distribution.
- Sample $x_2 \in \{0, 1\}^{n_2}$, and, output,

$$E(x,y) = Z_{1,y}(x) \circ \ldots \circ Z_{m,y}(x).$$

We want to prove E is a good two-source extractor (when one source is dense). Before we start prove:

Question 4.1. E is a $((n_1, k_1), (n_2, k_2) \rightarrow_{\gamma} m)$ two-source extractor, iff it is a two source extractors for all flat sources A and B over $K_1 = 2^{k_1}$, $K_2 = 2^{k_2}$ elements, respectively.

From now on we assume X is a flat distribution over a set A of size $K_1 = 2^{k_1}$, and Y is a flat distribution over a set B of size $K_2 = 2^{k_2}$. We will start with the m = 1 case. Prove:

Question 4.2. E(X,Y) is γ -biased for $\gamma = 2^{\frac{n_1-k_1}{k}} \cdot (\varepsilon^{1/k} + k \cdot 2^{-k_2/2}).$

If you wish, you may follow the following proof framework. For $x \in \{0,1\}^{n_1}$, $y \in \{0,1\}^{n_2}$ define

$$e(x,y) = (-1)^{E(x,y)}.$$

Our goal is to bound $|\mathbb{E}_{a \in A, b \in B} e(a, b)|^k$, and to use the k-wise independence for that (in a way similar to what we did when proving concentration bounds for k-wise independence). Use Jensen's inequality, and the fact that k is even, to prove $(\mathbb{E}_{a \in A} \sum_{b \in B} e(a, b))^k \leq \mathbb{E}_{a \in A} (\sum_{b \in B} e(a, b))^k$. Use the k-wise independence to prove that for any $r \leq k$, and any different $b_1, \ldots, b_r \in \{0, 1\}^{n_2}$, $\mathbb{E}_{x \in \{0,1\}^{n_1}} \prod_{j=1}^r e(x, b_j) \leq \varepsilon$.

We now want to augment this in several ways: first, we would like to output many bits, and second we want to prove the construction is strong.

Question 4.3. Let E be as above with m output bits. Prove that the output of E is $2^{m/2}\gamma$ close to uniform.

finally, prove it is strong (with weaker parameters), and choose parameters. Prove:

Question 4.4. Prove that there exist constants $c_1, c_2 > 0$ such that for any n there exists an explicit $((n, k_1 = \frac{3}{4}n), (n, k_2 = c_1 \log n) \rightarrow_{\gamma} m)$ two-source extractor $E : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^m$ for $m = c_2k_2$ that is strong in the first source, and where $\gamma = 2^{-c_2k_2}$.

So far we have extracted $\Omega(k_2)$ bits (and we think of k_2 as being small). Now, we would like to compose it with a good seeded extractor to output $\Omega(k_1 + k_2)$ bits. Suppose we have:

- $2EXT: \{0,1\}^{n_1} \times \{0,1\}^{n_2} \to \{0,1\}^d$ be a $((n_1,b_1), (n_2,b_2) \to_{\varepsilon_1} d)$ two-source extractor, that is strong in the first source.
- $EXT: \{0,1\}^{n_1} \times \{0,1\}^d \to \{0,1\}^m$ be a (b_1, ε_2) extractor.

Define $E: \{0,1\}^{n_1} \times \{0,1\}^{n_2} \to \{0,1\}^m$ to be the following composition of 2EXT and EXT:

$$E(x, y) = EXT(x, 2EXT(x, y)).$$

Question 4.5. Prove that E is a $((n_1, b_1), (n_2, b_2) \rightarrow_{\varepsilon_1 + \varepsilon_2} m)$ two-source extractor.

5 The above extractor is non-malleable

We now claim that the two-source extractor given in the previous section is, in fact, non-malleable (when reducing the output length appropriately). The idea is that if an adversary can associate a seed to another in a way that the outputs are correlated, then the parity of the two-outputs is biased. To prevent that, in the extractor of the previous section, instead of by picking x from a $(k = k_1 m, \varepsilon)$ -wise independent distribution, we will chose it from a $(2k, \varepsilon)$ -wise independent distribution, and this should make us immune against such adversaries.

To make this work, in the sum $\mathbb{E}_{x \in \{0,1\}^{n_1}} \prod_{j=1}^r e(x, b_j) e(x, \phi(b_j))$, where $\phi(b_j)$ is the seed the adversary associates with the seed b_j , it seems we need, somehow, that the set of all b_i is different than any $\phi(b_j)$, which is impossible (why?). For that they use a "representing sample", for which this holds.

We cite the following graph theoretic lemma:

Lemma 7. Let G = (V, E) be a directed graph with no self-loops (but possibly with parallel edges) where every vertex has regular out-degree t. Let $w : V \to \mathbb{R}$ be a weight function. Then, there exists a subset $A \subseteq V$ such that

• The induced subgraph of G on A is a-cyclic.

•
$$|A| \ge \frac{|V|}{t+1}$$
, and,

• Let $\overline{w(S)}$ denote the average weight of vertices in $S \subseteq V$, i.e., $\overline{w(S)} = \frac{1}{|S|} \sum_{s \in S} w(s)$. Then, $\overline{w(A)} \ge \frac{\overline{w(V)}}{t+1}$.

You do not need to prove the lemma (but, of course, you may prove it if you wish).

With that prove:

Question 5.1. There exists a constants c > 0 such that for any n there exists an explicit $(k = \frac{3}{4}n, \varepsilon)$ 1-non-malleable extractor $E : \{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$ for $d = O(\log n)$, $m = \Omega(d)$ and $\varepsilon = 2^{-m}$.

You do not need to write the whole proof from the beginning, just mention the places where there is a change. Also specify what is the graph G and how you define the weight of vertices in the graph.

Doing it for *t*-wise, would give an extra bonus.

6 A condenser from Trevisan's reconstruction scheme

In the lecture notes you will find a section on reconstructive extractors (though, we did not go over it in class). We use the definitions given in the lecture notes.

Let (E, A, R) be a (p, q) reconstructive extractor, where:

- $E: \{0,1\}^n \times \{0,1\}^{r_E} \to \{0,1\}^m$,
- $A: \{0,1\}^n \times \{0,1\}^{r_A} \to \{0,1\}^a$, and,
- $R: \{0,1\}^a \times \{0,1\}^{r_A} \times \{0,1\}^{r_R} \to \{0,1\}^n$.

Let X be an (n, k)-source and Y be the uniform distribution over $\{0, 1\}^{r_A}$.

Question 6.1. Prove that the distribution $A(X,Y) \circ Y$ is (1-q)-close to a distribution with min-entropy at least $k + r_A - \log \frac{1}{a} - 1$.

We now want to use the above fact to prove that Trevisan's advice function is a loseless condenser.

Definition 8. A function $C : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a $k_1 \to_{\varepsilon} k_2$ condenser if for every (n,k_1) -source $X, C(X,U_d)$ is ε -close to a distribution with k_2 min-entropy. We say C is lossless if $k_1 = k_2$.

In Lecture 5, our next-bit predictor had a relatively small success probability, and consequently the success of the reconstruction scheme (q) was polynomially-small. Consider the following Lemma:

Lemma 9. If a flat distribution Y over $\{0,1\}^m$ has min-entropy at most εm , then there is a next-bit predictor T for Y with success probability $1 - \varepsilon$.

Use Trevisan's scheme and the previous question to obtain a small-error lossless condenser. Specifically, prove the following:

Question 6.2. Assume there exists a weak $(\ell = \log \bar{n} = \log n + O(1), \rho)$ design $Z_1, \ldots, Z_m \subseteq [t]$ with $m \geq \frac{k+t}{\varepsilon}$. Then, there exists a function $C : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^a$ that is a $k \to_{O(\varepsilon)} k$ condenser, with $a = \rho m$ and $d \leq t$.