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General guidelines

The questions fall into several categories:

K : Make sure you know how to solve. Do not submit.

M : Mandatory questions.

C : Choose one of the questions.

B : Bonus questions.

Lectures K M C B

Ex1 Lectures 1 and 2 1,2,15,17 20,7-12 16,23,25,26 3,6,14

Ex2 Lectures 3 and 4 26 27,29,30 32,33 31,28

Ex3 Lectures 5 and 6 34,36,42,44 35,37,38,43,45 39,40 41

Ex4 Lectures 7 and 8 48 46,51,52,53,54 47,49,50

Ex5 Lectures 9 and 10 61 55,56a-c,57,58,59,60,62 56d

Ex6 Lectures 11 and 12 64,65 63,66-69 70

Statistical distance and min-entropy

1. In class we defined the statistical (also known as variational) distance between two distribu-
tions A and B taking values in U to be |A− B| = maxT⊆U |Pr[A ∈ T ]− Pr[B ∈ T ]|. A× B
denotes the distribution on (a, b) obtained by independently picking a according to A and b
according to B. (A,B) denotes some random variable on U × U with marginal distributions
A and B. For f : U → U ′ and A that is distributed over U let f(A) denote the distribution
on U ′ obtained by picking a ∼ A and outputting f(a).

(a) Prove that |A−B| = 1
2

∑
x∈U |A(x)−B(x)|.

(b) Prove that |A×B −A′ ×B′| ≤ |A−A′|+ |B −B′|.
(c) Show that it is not always the case that |(A,B)− (A′, B′)| ≤ |A−A′|+ |B −B′|.
(d) Assume |(B|A = a)−C| ≤ ε for every a ∈ U . Prove that |(A,B)−A×C| ≤ ε. Conclude

that if E : {0, 1}n → {0, 1}m is an extractor for (n, n2 ) oblivious bit-fixing sources with
error ε, and f(x) returns n

2 bits of x, then |E(X) ◦ f(X)− Um × f(X)| ≤ ε.
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(e) Prove that |f(A)− f(B)| ≤ |A−B| for every deterministic function f .

(f) Extend the previous item to a probabilistic f .

2. For a distribution X over U , the entropy function is H(X) =
∑

a∈U X(a) log 1
X(a) , where we

only sum over nonzero X(a). Recall that the min-entropy of X is H∞(X) = mina∈U log 1
X(a) .

Also, let H0(X) = log(|Supp(X)|).

(a) Prove that H∞(X) ≤ H(X) ≤ H0(X).

(b) It is a fact that H(X,Y ) ≤ H(X) + H(Y ). Find an example where H∞(X,Y ) >
H∞(X) +H∞(Y ).

(c) Prove that H∞(X|Y ) ≥ H∞(X,Y ) − H0(Y ), where H∞(X|Y ) = − log
∑

y∈U Pr[Y =
y] maxx∈U Pr[X = x|Y = y].

3. (a) Prove that the set of (n, k) sources, treated as vectors in R2n is a polytope.

(b) Prove that the vertices of the polytope are exactly the flat distributions.
Guidance: Let S be a polytope defined by a set of linear constraints (equalities and
inequalities). For a point p, let n(p) denote the number of constraints that are satisfied
with equality at p. You can use the fact that a point p of a convex S set is a vertex of
the polytope iff n(p) is maximized.

(c) Prove that every (n, k) source is a convex combination of flat distributions with entropy
k.

(d) Conclude that E : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε) extractor iff it is an extractor
for all flat distributions with min-entropy k.

4. Let A be a distribution over U . Prove that if A is not ε-close to a k-source then there exists
a subset S ⊆ U of cardinality at most 2k such that Pra∈A[a ∈ S] ≥ ε.

Non-oblivious extractors

5. Let q > 0 be a fixed integer and α = log3 2. Prove that Iq(IMAJ3) = O( q
nα ), where IMAJ3 is

the iterated majority function defined in class.

6. In the leader election problem, n players, q of which are malicious, collectively choose a single
leader. The goal is to choose the leader in such a way that the probability of choosing a
faulty player as a leader is not too large. Formally, for a leader election protocol P with r
rounds, let Iq(P ) be the maximal probability of choosing a malicious leader (over the possible
strategies of the malicious players).

Consider the following protocol for leader election, due to Feige, known as the “Lightest-Bin
Protocol” (LB):

• Set X ← [n].

• Repeat while |X| > 1:

– Each player in X broadcasts a random bit. Let X0 denote the set of players who
broadcast 0, and X1 denote the set of players who broadcast 1.

– If |X0| ≤ 1
2 |X|, set X ← X0. Otherwise, X ← X1.

• Output the single element in X.
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(a) Let δ > 0 be such that there are q = (1
2 − δ)n malicious players. Assume that n − q is

an exact power of 2 and set t = log(n− q). Prove that Iq(LB) ≤ 1− (n− q)−t/4.

(b) Prove that if there exists a leader election protocol P such that Iq(P ) ≤ ε then there
exists a collective coin flipping protocol f such that Iq(f) ≤ ε.

Expanders

7. Let G be an undirected, regular graph. Prove:

• The vector 1 is an eigenvector of A with eigenvalue 1.

• For all i ∈ [n], |λi| ≤ 1.

8. Let G be a regular, undirected graph. Prove that the number of connected components of G
equals the dimension of its 1-eigenspace. In particular, G is connected iff λ2 < 1.

9. Prove that if λ is an eigenvalue of an undirected bipartite graph, then do does −λ. Prove that
a D-regular, undirected connected graph G is bipartite iff λn = −1. What is the associated
eigenvector vn ?

10. Let Gn be a cycle on n vertices. Show that {χk}n−1
k=0 is an orthonormal eigenvector basis for

Gn with eigenvalues cos
(

2πk
n

)
, where χk(i) = ωki for ω a primitive n-th root of unity. Is

{Gn}n∈N a family of expanders?

11. The diameter of a graph is the maximum minimal distance between two vertices in the graph.
Let G be a D regular graph over n vertices.

(a) Prove that diam(G) ≥ logD−1(n− 1)− 2.

(b) Prove that diam(G) ≤ 1 + log 1
λ
n, where λ = max {−λn, λ2}.

12. Prove that in any D-regular, undirected graph with n vertices, if D ≤ n
2 then λ ≥ 1√

2D
, where

λ = max {−λn, λ2}.
Hint: Calculate Tr(A2) in two different ways.

Oblivious extractors

13. Let n be an integer, and ε ≥ 0. For every q ≤ n − log n − 2 log 1
ε − O(1) and m ≤ n −

q − 2 log 1
ε − O(1) there exists an ε-error extractor E : {0, 1}n → {0, 1}m for (n, q) oblivious

bit-fixing sources.

14. (a) Let M be an m× n matrix over F2 for n ≥ m. Define the oblivious bit fixing extractor
f : {0, 1}n → {0, 1}m by f(x) = Mx. Prove that if f is a zero error extractor for (n, q)
oblivious bit fixing sources, then Cf =

{
M †a | a ∈ Fm2

}
is an error correcting code with

distance at least q + 1.

(b) Conclude that if there exists a linear zero-error extractors for (n, 2n
3 + 1) oblivious bit-

fixing sources that extract two bits then there exists a binary linear code with dimension
2 and distance 2n

3 + 2. The Plotkin bound says there is no such code, and therefore we
may conclude that there is no such extractor.
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Deterministic extractors

15. Show that there is no 1-source extractor. Namely, for every E : {0, 1}n → {0, 1} there exists
an (n, k = n− 1) source X such that f(X) is fixed.

16. Let n be an integer, and ε ≥ 0. For every m ≤ 2k − log n − 2 log 1
ε − O(1) there exists

a two-source extractor E : ({0, 1}n)2 → {0, 1}m with ε-error for independent sources with
min-entropy k.

17. Let H be the Hadamard matrix of dimension 2n, where Hi,j = (−1)〈x,y〉 (the indices are
interpreted as binary vectors of length n). Find ‖H ‖2.

Ramsey graphs

18. Prove that there is no graph on n vertices that is
(

1
2 log n− 2

)
-Ramsey.

Hint: Let n = R(a, b) be the smallest integer such that for every graph on n vertices, there
is always a clique of size a or an independent set of size b. Prove that R(a, b) ≤ R(a− 1, b) +
R(a, b− 1).

19. Prove that there exists a graph on n vertices that is 2 log n-Ramsey. By the same method,
prove that there exists a bipartite graph on n vertices that is 2 log n-Ramsey.

20. Show how to explicitly translate a (k, 0) 2-source disperser E : ({0, 1}n)2 → {0, 1} into a
2k+1-Ramsey graph on 2n vertices.

Affine extractors

21. Prove that there exists an affine extractor E : Fn2 → {0, 1}
m for min-entropy k ≥ 2 log n+O(1),

where m ≤ k −O(1).

22. Find an explicit affine extractor E : Fn2 → {0, 1} for min-entropy larger than n
2 . Hint: You

may want to use the Chor-Goldreich two-source extractor that we saw in class.

Extractors and dispersers

23. Prove that for every integers n ≥ k and ε > 0 there exists a (K, ε) disperser E : [N ]× [D]→
[M ] with m = k + d− log log 1

ε −O(1) and d = log(n− k) + log 1
ε +O(1).

24. Let E : [N ] × [D] → [M ] be a (K, ε) disperser such that D ≤ (1−ε)M
2 and ε ≤ 1

2 . Then,
D = Ω

(
1
ε log N

K

)
. Deduce that every (K, ε) disperser E : [N ]× [D]→ [M ] has an entropy loss

of at least log log 1
ε −O(1).

25. Consider the privacy amplification problem. Alice holds a secret x ∈ {0, 1}n. Eve knows t bits
of information about x, w = f(x) ∈ {0, 1}t. To overcome this problem, Alice would like to
hash x to a shorter string, h(x) ∈ {0, 1}m, that looks truly uniform to Eve. Formally, Alice
wants h such that |h(X) ◦ f(X)− Um ◦ f(X)| ≤ ε. What can Alice do?
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Limited independence

26. Prove that the k-wise sample space of size nk we saw in class is indeed k-wise independent.

27. For every a ∈ {0, 1}logn , 0 6= i ∈ {0, 1}logn, consider the construction Xi(a) = 〈a, i〉 mod 2.
Prove that X1, . . . , Xn−1 forms a pairwise independent sample space.

28. Prove: If X = X1, . . . , Xn is k-wise independent and each Xi is boolean then |Supp(X)| ≥
B(k/2, n), where B(r, n) is the number of words of weight at most r in the n-dimensional
boolean cube.

29. Let V = {0, 1}m and H ⊆ V → V a two universal family of hash functions (see definition in
Lecture 2). Fix two sets A,B ⊆ V . Call a hash function h ∈ H ε-good for A,B if∣∣∣∣ Pr

x∈V
[x ∈ A ∩ h(x) ∈ B]− ρ(A)ρ(B)

∣∣∣∣ ≤ ε,

where ρ(C) = |C|
|V | .

Prove that for any A,B ⊆ V , ε > 0,

Pr
h∈H

[h is not ε-good for A,B] ≤ ρ(A)ρ(B)(1− ρ(B))

ε2 · |V |
≤ 1

ε2|V |
.

30. For a set C, let UC denote the uniform distribution over C.

Let H ⊆ Λ→ Γ be a two universal family of hash functions (see definition in Lecture 2). For
a distribution D over Λ let (H,H(D)) denote the distribution over H×Γ obtained by picking
d according to D, picking h uniformly from H and outputting (h, h(d)).

• Prove that for any distribution X over C, ‖X − UC ‖22 = ‖X ‖22 − ‖UC ‖
2
2.

• Prove that for any distribution X, ‖X ‖22 = Prx1,x2∈X [x1 = x2].

• Prove that ‖ (H,H(D)) ‖22 ≤ ‖UH ‖
2
2 · [‖UΓ ‖22 + ‖D ‖22].

• Conclude that ‖ (H,H(D))− UH × UΓ ‖2 ≤ ‖UH ‖2 · ‖D ‖2.

• Prove that ‖ (H,H(D))− UH × UΓ ‖1 ≤
√
|Γ| · ‖D ‖2.

31. Among known NP-complete problems, reductions can be found that preserve the number of
solutions (or witnesses). A characteristic of such NP-complete problems is that their instances
have widely varying numbers of solutions. It is then natural to ask whether it is inherent,
and Valiant and Vazirani shows that it is not.

We say that L1 ≤r L2 if there exists a randomized polynomial-time Turing machine M
and a polynomial p such that if x ∈ L1 then Pr[M(x) ∈ L2] ≥ 1

p(|x|) and if x /∈ L1 then

Pr[M(x) ∈ L2] = 0.

(a) Find a two universal family of hash functions (see definition in Lecture 2) H ⊆ {0, 1}n →
{0, 1}k for which you can express the condition h(x1, . . . , xn) = 0 as a CNF with the
variables x1, . . . , xn.

(b) Let UniqSAT be the language of satisfiable CNFs with only one satisfying assignments.
Prove that SAT ≤r UniqSAT.
Hint: Pick k at random and combine (a) with your original CNF formula.
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32. A universe U has an (unknown) set T ⊆ U of good elements of size n and an (unknown) set
S ⊆ U of bad elements of size n. The elements U \ (S ∪ T ) are neutral. Our goal is to choose
a subset A ⊆ U that contains at least one good element and no bad elements. We call such
set an appropriate set.

(a) Suppose we choose A so that every element in U is in A with probability p. The choices
are independent. Prove that if p = 1

n then the probability that A is appropriate is
lower-bounded by some constant that is independent of n.

(b) Choose p such that if instead of independently, we choose in a pairwise-independent
manner, we can still get a constant probability of choosing an appropriate A.

33. You are about to play a game where n coins are laid covered on a table and you uncover
and take 2n

3 coins. You are promised that k < n
3 of the coins are pure gold and the rest

copper. The catch is that you first have to announce your strategy (be it deterministic or
probabilistic) and only then an adversary places the coins on the table. Show that:

(a) If you use a deterministic strategy, you can guarantee no gold coin.

(b) If you use n random coins you can almost certainly get Ω(k) gold coins. What is the
failure probability?

(c) If you use O(log n) random coins, you can guarantee Ω(k) gold coins with probability at
least 1−O( 1

k ).

Fourier analysis

34. Prove Claim 2 from Lecture 3.

35. Let G be a finite Abelian group.

(a) Prove that there are exactly |G| characters of G.

(b) Let Ĝ be the set of characters. Prove that Ĝ is a group.

(c) Prove that G ∼= Ĝ.

36. Let H be a group and S a set of generators. The Caylely graph C(H,S) is defined as follows:
The vertices are labeled with elements of H, and (a, b) is an edge iff a = bs−1 for some s ∈ S.

(a) What is C(Zn, {1,−1})? What is C(Zn2 , {e1, , en}) (where ei has 1 in the i-th coordinate
and 0 otherwise)?

(b) Prove that if H is Abelian then the characters of H form an orthonormal basis for
C(H,S).

(c) Calculate the eigenvalues and the spectral gap of C(Zn2 , {e1, , en}).

37. We will use Fourier analysis to prove the result of Question 28. Let k be a constant.

(a) Prove that D is a k-wise independent distribution if and only if D̂(S) = 0 for every S
with 0 < |S| ≤ k.

(b) Let d = k
2 and denote t =

∑d−1
i=0

(
n
i

)
. Let X ⊆ {0, 1}n with |X| < t. Show that there is

a function f : {0, 1}n → R which satisfies:
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• f is not identically zero.

• f̂(S) = 0 for every S with |S| > d.

• f(x) = 0 for every x ∈ X.

(c) Conclude that any k-wise independent distribution over {0, 1}n has support size at least
Ω(nk/2).

ε-bias and almost independence

38. Fill in the details of the construction of Subsection 2.3 from Lecture 3. Specifically, prove
that the concatenated code meets these parameters and that it is balanced.

39. Let S be an ε-biased set. Define the graph G = C(Zn2 , S) and let A be its normalized
adjacency matrix.

(a) What are the eigenvectors of A (you might want to look at previous questions).

(b) Prove that G has a spectral gap of at least 1− 2ε.

40. Prove that if a distribution Y is (k, ε)-wise independent then there exists a distribution X
that is k-wise independent and |X−Y | ≤ 2nkε. Hint: Consider the bias of linear tests of size
at most k. Construct X explicitly. If you wish you can see the easy proof at [1].

41. (due to Swastik Kopparty) Let f, g : {0, 1}n → C. We define their convolution h = f ? g to
be

h(x) =
∑
y

f(x⊕ y)g(y).

Note that if D1 and D2 are distributions, the distribution D1 ? D2 corresponds to the distri-
bution of d1 ⊕ d2 where d1 ∼ D1 and d2 ∼ D2 are picked independently.

(a) Prove that for every S ⊆ [n], ĥ(S) = f̂(S) · ĝ(S).

(b) Prove that for any ε-biased distribution D over {0, 1}n, ‖D ‖22 ≤ ε2 + 1
2n .

(c) Let D be an ε-biased distribution, and let D(t) = D ? . . . ? D (t times). Prove that D(t)

is εt-biased and that |Supp(D(t))| ≤
(|Supp(D)|+t

t

)
.

(d) Let D be an ε-biased distribution over {0, 1}n. Use the previous items to prove that

|Supp(D)| ≥ Ω
(

n
ε2 log 1

ε

)
.

Hint: Use (b) to derive a lower bound on |Supp(D)| and then choose t accordingly.

Finite fields

42. We represent F16 as F2[X](mod X4 +X + 1). X is a generating element for F?16. Below you
can find a table relating the vector space representation to powers of X. Find how many
elements generate F?16. How many elements generate F?q for an arbitrary prime power q?
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Power Element Vector space representation

0 0 (0, 0, 0, 0)
X0 = X15 = 1 1 (0, 0, 0, 1)

X X (0, 0, 1, 0)
X2 X2 (0, 1, 0, 0)
X3 X3 (1, 0, 0, 0)
X4 1 +X (0, 0, 1, 1)
X5 X +X2 (0, 1, 1, 0)
X6 X2 +X3 (1, 1, 0, 0)
X7 1 +X +X3 (1, 0, 1, 1)
X8 1 +X2 (0, 1, 0, 1)
X9 X +X3 (1, 0, 0, 1)
X10 1 +X +X2 (0, 1, 1, 1)
X11 X +X2 +X3 (1, 1, 1, 0)
X12 1 +X +X2 +X3 (1, 1, 1, 1)
X13 1 +X2 +X3 (1, 1, 0, 1)
X14 1 +X3 (1, 0, 0, 1)

43. Give an efficient algorithm (polynomial in the input length) that given a degree m polynomial
E(X) that is irreducible over Fp, and a non-zero element x ∈ Fq = Fp[X](mod E), finds x−1.

44. Let F be a finite field. What is the expected number of roots of a random univariate polyno-
mial of degree k over F?

45. Let Fq be a finite field of odd characteristic. An element x ∈ F?q is a quadratic residue if there
exists y ∈ Fq such that x = y2. What is the number of quadratic residues in Fq? Prove that
the set of quadratic residues is a multiplicative group.

AC circuits

46. Prove: For every constant d ≥ 2, there are circuits of size 2O(n1/(d−1)) that compute the parity
of n bits.

47. Prove Lemma 9 from Lecture 4 using a two-universal family of hash functions.

48. Prove: The worst-case, 1
3 -approximation of the Parity function requires degree n, and this is

tight.

49. Prove that the Majority function is not in AC0.

50. Prove that multiplication of two n-bit inputs is not in AC0.

51. Prove that Parity is hard on average for AC0.

52. Let AC0(3) be the class of languages decidable by AC0 where we allow MOD3 gates in ad-
dition to the usual operations {∧,∨,¬}. A MOD3 gate on inputs x1, . . . , xn returns 0 if
(
∑

i xi) mod3 = 0 and 1 otherwise. We say p : GF(3)n → GF(3) solves parity on average
with ε error, if Prx∈{0,1}n [p(x) = Parity(x)] ≥ 1− ε.

8



Prove that any AC0(3) circuit of size s and degree d can be approximated by a (O(log s
ε log s))d-

degree polynomial over GF(3) with average case error (with respect to the uniform distribu-
tion) at most ε.

53. In this question we prove parity cannot be solved on average (with respect to the uniform
distribution) by low-degree polynomials over GF(3).

(a) Prove that every function f : GF(3)n → GF(3) can be uniquely expressed as a polyno-
mial p : GF(3)n → GF(3) of local degree at most 2.

(b) Let f : {0, 1}n → {0, 1} be a boolean function. Let φ : {0, 1} → GF(3) be such that
φ(1) = −1 and φ(0) = 1. Define f ′ : {−1, 1} → {−1, 1} such that f ′(φ(x1), . . . , φ(xn)) =
φ(f(x1, . . . , xn)). What is parity′?

(c) Prove that Parity is not in AC0(3).

(d) Prove that Parity is hard on average for AC0(3).

54. Let RAC0 be the class of languages such that L ∈ RAC0 if there exists an AC0 circuit CL :
{0, 1}n × {0, 1}poly(n) → {0, 1} such that:

• If x ∈ L then Pry[CL(x, y) = 1] ≥ 2
3 .

• If x /∈ L then Pry[CL(x, y) = 1] ≤ 1
3 .

Prove that RAC0 ⊆
⋃
cDSPACE(logc n).

Designs and Trevisan’s extractor

55. Prove that for every `, a ≥ 1, there exists an (`, a)-design S1, . . . , Sm ⊆ [t] with t = O( `
2

a ) and

m = 2Ω(a).

56. Two norm-one vectors v1, v2 ∈ Rn are almost orthogonal if |〈v1, v2〉| ≤ ε.

(a) Show how to convert an (`, a)-design S1, . . . , Sm ⊆ [t] into:

• A set of m nearly orthogonal norm-one vectors.

• A binary error-correcting code of length t with m codewords and large distance.

(b) How many norm-one orthogonal vectors can one put into Rd?
(c) How many norm-one ε-almost orthogonal vectors can one put into Rd? Give a lower

bound.

(d) How many norm-one ε-almost orthogonal vectors can one put into Rd? Give an upper
bound. Can you reach tight estimations?

57. Read the definition of weak design given in the lecture notes. It is known that there exist
explicit weak (`, ρ = 1) design S1, . . . , Sm ⊆ [t] with t = O(`2 logm). Notice that ρ = 1.
Use this weak design, and the NW construction to construct a strong (k, ε) extractor E :
{0, 1}n × {0, 1}t → {0, 1}m with t = O(log2(nε ) log k) and m = k −O(t).

58. In previous lectures we saw how to construct an extractor from pair-wise independence,
namely E(x, h) = h(x) where h is sampled from a two-universal family of hash functions.
Use almost pair-wise (and almost t-wise) independence to construct a (k, ε) strong extractor
E : {0, 1}n × {0, 1}t → {0, 1}m with t = O(m + log n

ε ) and almost optimal entropy loss
2 log 1

ε +O(1).
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59. Let E : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) strong extractor. Define E′ : {0, 1}n ×
({0, 1}d)2 → {0, 1}2m such that E′(x; y1, y2) = E(x; y1) ◦ E(x; y2). Prove that E′ is a (k +
m+ log 1

ε , O(ε)) strong extractor.

60. Show how to combine the extractors in the previous questions, to obtain an explicit extractor
with almost minimal entropy loss 2 log(1

ε ) +O(1) and poly-logarithmic seed length.

PRGs

61. (Distinguishably implies predictability) Let f : {0, 1}n → {0, 1} and suppose C : {0, 1}n ×
{0, 1} → {0, 1} is a circuit such that

Pr
x∼Un

[C(x, f(x)) = 1]− Pr
x∼Un,b∼U1

[C(x, b) = 1] > δ.

Prove that there exists another circuit C ′ : {0, 1}n → {0, 1} such that

Pr
x∼Un

[C ′(x) = f(x)] >
1

2
+ δ.

62. Prove: If there exists a uniform function G : {0, 1}` → {0, 1}`+1 running in poly(2`) time,
which is pseudo-random against circuits of size s(`c) for some c > 0, and if G is also one-to-
one, then there exists a uniform language in EXP that cannot be approximated by circuits of
size s(`d) for some d > 0.

Can you prove the same without the assumption that G is one-to-one. What is the problem?
(Remark: It is known how to remove the one-to-one requirement using things we have not
learnt).

Non-malleable extractors

63. Consider the following two definition for a t-non-malleable extractor:

Def 1: A function E : {0, 1}n × {0, 1}d → {0, 1}1 is a (t, k, ε) non-malleable extractor if it
satisfies the following property: If X is an (n, k) source and Y is uniform on {0, 1}d, and
f1, . . . , ft are arbitrary functions from d bits to d bits with no fixed points then

(E(X,Y ), E(X, f1(Y )), . . . , E(X, ft(Y )), Y ) ≈ε (U1, E(X, f1(Y )), . . . , E(X, ft(Y )), Y ).

Def 2: A function E : {0, 1}n × {0, 1}d → {0, 1}1 is a (t, k, ε) non-malleable-second-def ex-
tractor if it satisfies the following property: For every X that is an (n, k) source, there exists
a set G ⊂ {0, 1}d of size (1−

√
ε)2d such that {E(X, y)}y∈G is (t, 10t

√
ε) wise independent.

Prove that if E is (t, k, ε) non-malleable then it is (t+ 1, k, ε) non-malleable-second-def.

64. Let X,Y, Z be random variables such that for any y ∈ Supp(Y ), the random variables (X|Y =
y) and (Z|Y = y) are independent. Assume that X is supported on {0, 1}n. Prove:

|(X,Y, Z)− (Un, Y, Z)| = |(X,Y )− (Un, Y )|.

65. Let (A ≈ε U |B) denote |(A,B) − (U,B)| ≤ ε. Let f be an arbitrary (deterministic or
probabilistic) function. Prove that if (A ≈ε U |B) then (A ≈ε U |B, f(B)).
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66. Give a full proof to the following claim we proved in class:

Let X,X ′ be two (possibly correlated) sources over {0, 1}n, and Y, Y ′ two sources over {0, 1}`
and assume (as usual) that

• (X,X ′) are independent of (Y, Y ′),

• X is a k +m+O(log 1
ε ) source, and

• Y is uniform.

Now, we make the further (strong) assumption that Y is independent of Y ′. Let E : {0, 1}n×
{0, 1}` → {0, 1}m be an arbitrary (k, ε) extractor. Then (E(X,Y ), E(X ′, Y ′)) is O(ε)-close
to Um × E(X ′, Y ′).

67. Suppose that for any k ≥ k0 there is an explicit (k, ε(n))-extractor Ek : {0, 1}n×{0, 1}t(n) 7→
{0, 1}

k
f(n) . Then, for any k, there is an explicit (k, log(n)(ε+ 2−t(n)))-extractor E : {0, 1}n ×

{0, 1}O(f(n) log(n)t(n)) 7→ {0, 1}k−k̄.

68. Let X,X ′ be two (possibly correlated) sources over {0, 1}n, and Y, Y ′ two sources over {0, 1}`
and assume (as usual) that

• (X,X ′) are independent of (Y, Y ′),

• For every x′, H∞(X|X ′ = x′) ≥ k, and

• Y is uniform.

Prove that if E is a strong (k, ε) extractor then (E(X,Y ), E(X ′, Y ′)) is ε-close to Um ×
E(X ′, Y ′).

69. (from C16) Let Cond : [N ] × [D] → [M ] be a k →ε k
′ condenser (if you don’t know what a

condenser is, look for the definition in the internet). Let X be an (n, k)-source and let S be
an independent random variable that is uniformly distributed over d-bit strings. Then, for
any δ > 0, with probability 1 − δ over s ∼ S it holds that Cond(X, s) is 2ε

δ -close to having
min-entropy k′ − d− log(2

δ ).

70. (from BIW06, C16) Let X1, . . . , Xt be independent n-bit random variables such that each Xi

is ε-close to having min-entropy k. Then, X = ⊕ti=1Xi is εt-close to having min-entropy k.
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