Expanders, Psuedorandomness, Derandomization

$Part \ I-Introduction$

Introducing some of the key players

- 1. Resilient functions.
- 2. Deterministic extractors:
 - (a) For oblivious and non-oblivious bit-fixing sources.
 - (b) For two independent sources (and Ramsey graphs).
 - (c) For affine sources.
- 3. Seeded extractors.

Deterministic amplification

- 1. A review of probabilistic inequalities, Markov, Chebychev, Chernoff.
- 2. Deterministic amplification by bounded independence.
- 3. Deterministic amplification by expander walks.
- 4. Deterministic amplification by extractors and dispersers.
- 5. (-) Approximating frequency moments efficiently in small space.

Small bias with respect to linear tests

- 1. The Fourier Transform.
- 2. (-) Back again to resilient functions.
- 3. ε -bias sets (and almost balanced binary error correcting codes).
- 4. Almost k-wise independence
- 5. (-) Testing linearity

AC^0

- 1. Parity is hard for AC^0 .
- 2. Average-case hardness for AC^0 .
- 3. Polylog-wise independence fools AC^0 .

Error-correcting codes and seeded extractors

- 1. A review of error-correcting codes and list-decoding.
- 2. Strong extractors and list-decoding.
- 3. Trevisan's extractor.

Part II – Two-source extractors

Two-soucres extractors

- 1. Non-malleable extractors.
- 2. The Chattopadhyay-Zuckerman construction.

Part III – The Hardness vs. Randomness Paradigm

The Paradigm

- 1. Pseudorandom generators.
- 2. The "Hardness vs. Randomness" paradigm and the Nisan-Wigderson PRG.

Hardness implies de-randomization

- 1. A review of error-correcting codes and local-decoding.
- 2. List-decoding RS codes.
- 3. The STV Worst-case to average-case reduction.
- 4. If E does not have sub-exponential circuits then $\mathsf{BPP} = \mathsf{P}$.

De-randomization implies hardness

- 1. Karp-lipton theorems, $PSPACE \subseteq P/poly$ implies PSPACE = MA.
- 2. NEXP \subseteq P/poly implies NEXP = MA (IKW).
- 3. Derandomizing PIT means proving circuit lower bounds (IK).

Part IV – Advanced topics

The many ways a graph can be expander

- 1. Combinatorial and algebraic expansion.
- 2. Ramanujan graphs and the LPS construction.
- 3. The zig-zag construction.
- 4. Better combinatorial expansion: explicit expanders with the unique neighbor property.

Better list-decodable codes and extractors

- 1. Parvaresh-Vardy codes
- 2. The Guruswami-Umans-Vadhan extractor.
- 3. The Dvir-Wigderson merger.