03684155: On the P vs. BPP problem. 8/1/2017

Take-Home Exam

Amnon Ta-Shma and Dean Doron

General instructions:

1. The deadline for the exam and the take home project is 15/2/17.
2. Solve at least 3 questions.
3. Submit your (typed) solution by mail to amnon@tau.ac.il and deandoron@mail.tau.ac.il.

4. Some questions are based on published papers. We do not give the due credit, because we
want to encourage you to try it yourself.

5. Please sign the attached statement that you indeed did it alone. Also, for each question you
solved with the help of some external source (be it electronic or human) please mention the
source explicitly.

6. If you find a mistake (or a typo), or you have a suggestion that may benefit others, please let
us know as soon as possible.

7. You have more than a month, use it!

8. Enjoy!

1 Non-uniform lower bounds implies non-trivial derandomization
Question 1.1. Prove that if either NEXP € P/poly or PERM ¢ AP/poly, then arithmetic circuit

identity testing for size n circuits computing polynomials of degree and mazximum coefficient size at
most poly(n) is in io-NTIME(2"")/n® for every constant £ > 0.

2 Derandomization under uniform assumptions

Question 2.1. Prove that there are functions in EXP that are not in io—HeurDTIME2/3(2°(”))/0(n).

Use what we proved in class to conclude that:

Question 2.2. Prove: if EXP N P/poly = BPP then EXP = BPP, i.e., if BPP # EXP then EXP
contains a language in P/poly that is not in BPP.



3 Lower bounds imply derandomization of space-bounded classes

In class we constructed, for every ¢,m, an explicit (¢/,a = logm)-design Z1,...,Z,, C [t| where
t = O(£?). Moreover, given i € [m] and j € [¢], we could output the j-th element of S; in space
O(llogm). Note that if we insist on ¢ = O(logm), t is not logarithmic in m and the construction
is not fully-explicit. We want to aim higher, and construct a design that achieves just that.

Question 3.1. Prove that for every m there exist constants c1, ca and cs for which exists a
(c1logm, cologm)-design Z1,...,Zy C [t] where t = c3logm. Moreover, we can generate each
element of S; in space O(logm).

Hint: Choose the S;-s in a pairwise independent way.

Now, show that the techniques we have seen in class can be adopted to prove a “hardness implies
derandomization” result in the space-bounded regime. As usual, we denote L = DSPACE(O(logn)).
A probabilistic space-bounded Turing machine is similar to the deterministic one (and so requires
to halt in polynomial-time) except that it also has a read-only, uni-directional random coins tape.
We denote BPL = BPSPACE(O(logn)). Prove:

Question 3.2. If there is a Boolean function computable in DSPACE(O(n)) such that Size(f) >
2°U") then there exists a Boolean function computable in DSPACE(O(n)) that is average-case hard
for circuits of size 224"

And,

Question 3.3. If there is a Boolean function computable in DSPACE(O(n)) such that Size(f) >
29 then BPL = L.

4 Approximate-counting is in the polynomial-time hierarchy
We know that PH C P#P, but what about approzimating a #P-function? You will show that it
can be done in BPPNP (that is, already in the third level of PH).

Question 4.1. Let #CSAT be the problem where given a circuit, count the number of accepting
inputs. Let f be an arbitrary function in #P. Prove that if we have a polynomial-time algorithm
A and a constant ¢ such that for every circuit C,

% L #CSAT(C) < A(C) < c- #CSAT(C),
then given € > 0 there exists an algorithm B such that for every x,
(1—¢)-flz) < B(x) < (1+¢)- f(x),
and runs in time poly(|x|,1/e).

Question 4.2. Let H C {0,1}" — {0,1}"™ be a two-universal family of hash functions, and let
S C{0,1}". Prove that for every t,

. — LA i < .
hPer H|{a ) h(a) 0 }| om t| < £292m




Question 4.3. For every k > 0, define the promise problem CSAT},:

o Yes instances: Circuits C for which #CSAT(C) > 2k+1,

e No instances: Circuits C for which #CSAT(C) < 2*.

Prove that for every k, CSAT}, can be solved in BPPNP.

Question 4.4. Prove that for every f € #P and ,0 > 0 there is a probabilistic algorithm A such
that

ljlr (1—-¢e)A(z) < f(x) < (1 +¢e)A(z)] > 149,

the algorithm runs in time poly(|z|,1/e,1og(1/6)) using an oracle for NP.



