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January 2, 2017

General guidelines

The questions fall into several categories:

(Know). Make sure you know how to solve. Do not submit.
(Mandatory). Mandatory questions.
(Bonus). Bonus questions.

HW 1 – Error-correcting codes.

Out: 6.11.2016
Due: 20.11.2016

1. (Know). Let C be a q-ary linear error-correcting code. Prove that the minimal weight of
a nonzero codeword is d if and only if the minimum Hamming distance between every two
distinct codewords is at least d.

2. (Mandatory). Let C be an (n, k)q code. Prove that there exists a word w ∈ Fnq such that

|B(w, (1− 1/q)n) ∩ C| ≥ qk−o(n).

3. (Mandatory). Let C be a (linear) [n, k, d]q code. Prove that d ≤ n− k + 1.

4. (Know). Let C be a (linear) [n, k, d]q code with a generating matrix G. Show to decode
codewords where no error occurred.

5. (Mandatory). Let n1 be a power of 2 and A a [n1, k1, d1]n1 code. Let B be a [n2, log n1, d2]2
code. Suppose A(x̄) for x̄ = x1, . . . , xk1 is A(x̄) = A1(x̄) ◦ . . . ◦ An1(x̄), with Ai(x̄) ∈ Fn1 .
Define B ◦ A to be (B ◦ A)(x̄) = B(A1(x̄)) ◦ . . . ◦ B(An1(x̄)). Prove that B ◦ A is a linear
binary code, and find its dimension and distance.

6. (Mandatory). Suppose you can efficiently decode A and B up to half the distance. Show
an efficient algorithm decoding the concatenated code. How many errors can you efficiently
correct?

7. (Mandatory). Prove the Johnson bound (Theorem 2 from Lecture 2) for the case of q = 2.

Guidance: Fix a word y and let c1, . . . , cL ∈ B(y, e) ∩ C. Define c′i = ci − y and let S =∑
i<j d(c′i, c

′
j). Find an upper bound and a lower bound on S.
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For the upper bound, consider the matrix M whose columns are the c′i-s and define mi as the
number of 1-s in each row. Express S using M and the mi-s and obtain an upper bound.

8. (Know). In the Reed-Muller code, we encoded a message x ∈ Fkq into a multivariate polynomial
p : Fmq → Fq. Prove the existence and uniqueness of p and explain how to find it efficiently.

9. (Know). Fix a ∈ Fmq and consider a random curve Γ : Fq → Fmq of degree-k that passes through

a. That is, Γ(t) = a+
∑t

i=1 zit
i where the zi-s are chosen uniformly and independently from

Fmq . Prove that the random variables Γ(1), . . . ,Γ(q− 1) are uniform and k-wise independent.

10. (Know). The Hadamard code Had is a [n = 2k, k]2 code. For a string z ∈ {0, 1}k, the w-th

coordinate of Had(z) ∈ {0, 1}2
k

is 〈z, w〉 modulo 2, which we abbreviate as 〈z, w〉2. Prove
that the Hadamard code has relative distance 1/2.

11. (Mandatory). Prove that the Hadamard code is δ-locally decodable for δ < 1/4. How many
queries do you have?

12. (Mandatory). Prove that Had : {0, 1}k → {0, 1}2
k

is
(

1
2 + ε, 1

4ε2

)
-list-decodable in time

poly(kε ).

Guidance: Let n = 2k and view f ∈ {0, 1}n as f : {0, 1}k → {0, 1}. Consider choosing
z1, . . . , zm ∈ {0, 1}n uniformly at random and given i ∈ {0, 1}k, outputting the majority
value among {f(zj)⊕ f(zj ⊕ ei)}j∈[m]. This algorithm works (for a suitable choice of m)

when ε is high (say 0.4). Why? How can we adopt it to handle an arbitrarily small ε?

13. (Mandatory). A function f : {0, 1}? → {0, 1}? is a one-way function if f can be computed by
a polynomial-time algorithm and for any probabilistic polynomial-time algorithm A and any
constant c, for every large enough n, it holds that Prx∈{0,1}n,r[A(f(x), r) ∈ f−1(f(x))] < n−c.

Let f be a one-way function such that f is one-to-one. Prove that for every probabilistic
polynomial-time algorithmA there is a negligible function ε = ε(n) such that Prx,r[A(f(x), r) =
〈x, r〉2] ≤ 1/2 + ε.

14. (due to Kopparty) (Mandatory). Let d be an odd integer and let C be an [n, k, d]2 code. Show
that there exists a linear code C ′ that is a [n, k − 1, d+ 1]2 code.

15. (due to Guruswami) (Bonus). Let 1 ≤ k ≤ n be integers and let p1 < . . . < pn be n
distinct primes. Denote K =

∏k
i=1 pi and N =

∏n
i=1 pi. Consider the mapping E : ZK →

Zp1 × . . .× Zpn defined by:

E(m) = (m mod p1, . . . ,m mod pn).

(a) Suppose that m1 6= m2. For i ∈ [n], define the indicator bi such that bi = 1 iff E(m1)i 6=
E(m2)i. Prove that

∏n
i=1 p

bi
i > N/K.

Deduce that when m1 6= m2, ∆(E(m1), E(m2)) ≥ n− k + 1.

(b) We will now adopt the Welch-Berlekamp algorithm to handle E. Suppose r = (r1, . . . , rn)
is the received word, where ri ∈ Zpi .

i. Prove there can be at most one m ∈ ZK such that∏
i:E(m)i 6=ri

pbii ≤
√
N/K. (1)
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In what follows, let r be the unique integer in ZN such that r mod pi = ri for every
i ∈ [n] (note that the Chinese Remainder theorem guarantees that there is a unique
such r).

ii. Assuming such an m exists, prove that there exist integers y, z with 0 ≤ y <
√
NK

and 1 ≤ z ≤
√
N/K such that y ≡ rz (mod N).

iii. Prove that if y, z are any integers satisfying the above conditions, then in fact
m = y/z. Note that a pair of integers (y, z) satisfying the above can be found by
integer linear programming in a fixed number of dimensions in polynomial time.

(c) Instead of condition (1), what if we want to decode under the more natural condition:
| {i | E(m)i 6= ri} | ≤ n−k

2 ? Show how this can be done by calling the above decoder
many times and erasing the last i symbols for each choice of i ∈ [n].
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HW 2 – Hardness implies derandomization

Out: 23.11.2016
Due: 11.12.2016

1. (Mandatory). Revisit the list-decoding algorithm for Reed-Solomon codes we gave in class,
and re-prove it taking care also of the output list size. That is, prove Theorem 6 from Lecture
2 (taken from [2]):

Theorem 1. There exists an algorithm that given as input:

• Code parameters: q, n ≤ q, deg,

• A sequence of n distinct pairs {(αi, yi)}ni=1, αi, yi ∈ Fq and

• An agreement parameter τ >
√

2deg
n ,

outputs a list of all polynomials p1, . . . , p` of degree at most deg satisfying | {i ∈ [n] : pj(αi) = yi} | ≥
τn. Furthermore, the list size ` is at most 2

τ . The algorithm runs in time poly(n, log q).

Notice that the list {(αi, yi)}ni=1 may have several values for the same αi.

2. (Mandatory). Prove that there exists an explicit [n, k]2 code that is (1
2 + ε, L) locally list-

decodable where n = poly(k, 1/ε) and L = poly(n/ε). Notice that the code is binary. The
(local) list-decoding procedure runs in time poly(log k, 1/ε).

For the proof you may take the Reed-Muller code we have analyzed in class, and concatenate
it with the Hadamard code. Also recall that Had is

(
1
2 + ε, 1

4ε2

)
-list-decodable.

3. (Know). Last item is Mandatory.

Prove that if there exists f ∈ PSPACE with Size(f) ≥ s(n) then for every ε(n) > 0 there

exists another f ′ ∈ SPACE(poly(n, log 1
ε )) such that Size 1

2
+ε(f) ≥ s(n/10)

poly(n
ε

) .

The proofs puts together what we have done in class:

• Suppose f ∈ PSPACE and Size(f) ≥ s(n). Given fn : {0, 1}n → {0, 1} construct

f ′n′ : {0, 1}n
′
→ {0, 1} that extends fn and is supposed to be hard on average (and you

need the binary version as in the previous question). What is n′ as a function of n?
Show that

{
f ′n′
}
∈ PSPACE by using Lagrange’s multi-variate interpolation.

• Assume C ′ is of size s′ and computes f ′ correctly with 1
2 + ε average-case success. Show

a randomized circuit computing f on inputs of length n, such that for every input it
succeeds with success probability 2/3. Which splitting point do you use?

• Get a deterministic circuit and conclude the theorem.

• For which of the classes PSPACE,E,EXP,NEXP,PSPACESAT,ESAT,EXPSAT,NEXPSAT

this worst-case to average-case reduction holds?

4. (Know). Let ε > 0 and set δ = ε/2. Prove that there exists an integer c such that given
access to a Boolean function on nδ variables with circuit complexity at least ncδ, there is a
pseudorandom generator G : {0, 1}n

ε

→ {0, 1}n computable in 2O(nε) time which fools circuits
of size n.
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5. (Mandatory). Prove that if there exists a function f ∈ E such that Size(f) = 2Ω(n) then
BPP = P.

6. (Mandatory). Prove that if there exists f ∈ E such that Size(f) = 2Ω(n) then MA = NP.

7. (Mandatory). [1] Let SizeSAT(fn) be the minimal size of a circuit C with oracle gates to SAT
that solves fn on inputs of length n.

Prove that if there exists f ∈ E such that SizeSAT(f) = 2Ω(n) then AM = NP.

8. (Know). Let f : {0, 1}n → {0, 1} and suppose C : {0, 1}n × {0, 1} → {0, 1} is a circuit such
that

Pr
x∼Un

[C(x, f(x)) = 1]− Pr
x∼Un,b∼U1

[C(x, b) = 1] > δ.

Prove that there exists another circuit C ′ : {0, 1}n → {0, 1} such that

Pr
x∼Un

[C ′(x) = f(x)] >
1

2
+ δ.

9. (Mandatory). Prove that for every large enough n there exists a function f : {0, 1}n → {0, 1}
such that Size 1

2
+ε(f) ≥ 2n/10 for ε = 2−Ω(n).

10. (Mandatory). Prove that (non-explicitly) there exists a (`, a)-design S1, . . . , Sm ⊆ [t] where
a = O(`2/t) and m = 2Ω(`).

11. Two norm-one vectors v1, v2 ∈ Rn are almost orthogonal if |〈v1, v2〉| ≤ ε.

(a) (Mandatory). Show how to convert an (`, a)-design S1, . . . , Sm ⊆ [t] into:

• A set of m nearly orthogonal norm-one vectors.

• A binary error-correcting code of length t with m codewords and large distance.

(b) (Mandatory). How many norm-one orthogonal vectors can one put into Rd?
(c) (Mandatory). How many norm-one ε-almost orthogonal vectors can one put into Rd?

Give a lower bound.

(d) (Bonus). How many norm-one ε-almost orthogonal vectors can one put into Rd? Give
an upper bound. Can you reach tight estimations?

12. (Mandatory). Consider the parity function Parity : {0, 1}` → {0, 1}. It is known that for

every d, Parity cannot be computed on more than a 1
2 + 2−Ω(`1/d) fraction of the inputs by

circuits of depth d and size 2O(`1/d) (you do not need to prove this).

With that, prove that the class RAC0 (of constant-depth, polynomial-size circuits that has
access to random input bits) is contained in

⋃
cDSPACE(logc n).

13. (Mandatory). Prove: If there exists an (ε = 1
4)–PRG G : {0, 1}` → {0, 1}`+1 against circuits of

size s running in time exponential in ` then there exists a function f in EXP that is worst-case
hard for circuits of size s.
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HW 3 – Non-uniform computation and the IKW theorem

Out: 11.12.2016
Due: 30.12.2016

1. (Mandatory). (Luca Trevisan) Let S(n) ≤ 2n

n . Show a function f on n bits such that

f(n)−O(n) ≤ Size(f) ≤ f(n).

2. (Mandatory). Prove: If P = NP then EXP 6⊆ P/poly.

3. (Know). Prove: If NP ⊆ P/poly then PH ⊆ P/poly.

4. (Know). Prove that NP = P implies Σ2 = P and PH = P.

5. (Mandatory). Prove: If NP ⊆ BPP then BPP = PH.

6. (Mandatory). Prove: MA ⊆ AM.

7. (Know). Prove: Succinct3SAT is NEXP-complete (under polynomial-time reductions).

Hint: Recall the reduction from NP to SAT.

8. (Mandatory). Prove the following hierarchy theorems:

(a) For any fixed c, EXP 6⊆ io-DTIME(2n
c
)/nc.

(b) If NEXP = EXP then there is a fixed d such that NTIME(2n)/n ⊆ DTIME(2n
d
)/n.

9. (Mandatory). We will prove that if NEXP = MA then NEXP ⊆ P/poly.

(a) Prove: If EXP 6⊆ P/poly then MA ⊆ io-NTIME(2n).

(b) Prove: If NEXP = EXP then NEXP 6⊆ io-NTIME(2n
a
)/n.

(c) Conclude that if NEXP = MA then NEXP ⊆ P/poly.

10. (a) (Mandatory). Prove that coNEXP ⊆ NEXP/poly.

(b) (Bonus). Prove that if coNP ⊆ NP/poly then PH collapses to the third level.

11. (Mandatory). What is wrong with the following proof that NEXP 6⊆ P/poly:

Define Σ2EXP the class of languages solvable by ∃y∀xφ(x, y, z), where |y|,|z|,|φ(x, y, z)| are
exponential in the size of |x|. Similarly define PH− EXP.

• If EXP = NEXP then EXP = PH− EXP. However, in PH− EXP there are languages not
in P/poly, hence: EXP = NEXP implies NEXP 6⊆ P/poly.

• But, NEXP ⊆ P/poly implies NEXP = EXP = MA which implies NEXP 6⊆ P/poly. A
contradiction.

• Thus, we may conclude that NEXP 6⊆ P/poly.

12. (Mandatory). Prove that for every k, Σ4 contains a language that does not belong to SIZE(nk).

13. (Mandatory). (Arbel Admoni) Prove: If DTIME(nlogn) ⊆ NP then NEXP 6⊆ P/poly.

14. (Mandatory). (Arbel Admoni) Prove: If NP = PH then NEXP 6⊆ P/poly.
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HW 4 – Natural proofs, Promise problems, Hierarchies and Count-
ing classes

Out: 2.1.2017
Due: 22.1.2017

1. (Mandatory). Let H ⊆ Fn be the GGM construction with seed length k built using a PRG
G : {0, 1}k → {0, 1}2k. Prove that if there exists a distinguisher running in time 2O(n) that
ε-distinguishes between the uniform distribution over H and the uniform distribution over Fn
then there exists a distinguisher running in time 2O(n) that ε · 2−n-distinguishes G(Uk) and
U2k.

2. (Mandatory). Let AC0[2] denote the class of functions computable by a polynomial-size,
constant-depth circuits allowing Parity gates.

• Prove that for any integer d, there exists a family Gn,s ⊆ Fn, where s is a seed of size
polynomial in n, such that every function in Gn,s is in AC0[2] and Gn,s looks random
for 2O(n)-size depth-d circuits, i.e., for any polynomial-size (in 2n) depth d circuit family
Cn : Fn → {0, 1}, |Pr[Cn(Fn) = 1]− Pr[Cn(Gn,s) = 1]| < 2−ω(n).

• Use question 12 from HW2 to prove that there is no lower bound proof which is AC0-
natural and useful against AC0[2].

3. (Mandatory). Suppose that the promise problem Π′ is Cook-reducible to the promise problem
Π and the queries made by the reduction never violate the promise. Then, Π ∈ Promise-NP∩
Promise-coNP implies Π′ ∈ Promise-NP ∩ Promise-coNP.

4. (Mandatory). Use the randomness-efficient error amplification to prove that BPP ⊆ ZPPNP.

5. (Mandatory). Let d ≥ 1 be some constant. Prove that if BPTIME(nd) = BPP then

BPTIME(t(n)) = BPTIME(t(n)c)

for every constant c ≥ 1 and time-constructible function t(n) that satisfies t(n) ≥ nd.

6. (Mandatory). Let t(n) and T (n) be time-constructible functions such that there exists a
constant k for which T (k)(t(n)) = 2ω(t(n)). Then, BPTIME(t(n)) ( BPTIME(T (t(n))).

7. (Fortnow) (Mandatory). The class GapP is the class of functions f such that for some NP
machine M , f(x) is the number of accepting paths minus the number of rejecting paths of
M on x. The class FP represent the class of polynomial-time computable functions.

Prove that for all functions f , the following are equivalent:

(a) f ∈ GapP.

(b) f is the difference of two #P functions.

(c) f is the difference of a #P function and an FP function.

(d) f is the difference of an FP function and a #P function.

8. (Fortnow) (Mandatory). Let f be a GapP function and q a polynomial. Prove that the
following are GapP functions:
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(a)
∑
|y|≤q(|x|) f(x, y).

(b)
∏

0≤y≤q(|x|) f(x, y).
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