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Amnon Ta-Shma and Dean Doron

January 2, 2017

General guidelines

The questions fall into several categories:

(Know). Make sure you know how to solve. Do not submit.
(Mandatory). Mandatory questions.
(Bonus). Bonus questions.

HW 1 — Error-correcting codes.

Out:
Due:

6.11.2016
20.11.2016

(Know). Let C be a g-ary linear error-correcting code. Prove that the minimal weight of
a nonzero codeword is d if and only if the minimum Hamming distance between every two
distinct codewords is at least d.

. (Mandatory). Let C' be an (n, k), code. Prove that there exists a word w € Fy such that

|B(w, (1=1/g)n) N C| > ¢*.
(Mandatory). Let C be a (linear) [n, k,d], code. Prove that d <n —k+ 1.

(Know). Let C be a (linear) [n,k,d], code with a generating matrix G. Show to decode
codewords where no error occurred.

(Mandatory). Let n; be a power of 2 and A a [nq, k1,d1],, code. Let B be a [ng,logny, da]s
code. Suppose A(Z) for T = x1,...,2k, s A(Z) = A1(Z) o...0 Ay, (Z), with 4;(Z) € Ty, .
Define Bo A to be (Bo A)(z) = B(A1(Z)) o...0 B(A4,,(Z)). Prove that B o A is a linear
binary code, and find its dimension and distance.

(Mandatory). Suppose you can efficiently decode A and B up to half the distance. Show
an efficient algorithm decoding the concatenated code. How many errors can you efficiently
correct?

(Mandatory). Prove the Johnson bound (Theorem 2 from Lecture 2) for the case of ¢ = 2.
Guidance: Fix a word y and let ¢i,...,c, € B(y,e) N C. Define ¢, = ¢; —y and let S =

> ic;d(ci; ;). Find an upper bound and a lower bound on S.
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For the upper bound, consider the matrix M whose columns are the ¢;-s and define m; as the
number of 1-s in each row. Express S using M and the m;-s and obtain an upper bound.

(Know). In the Reed-Muller code, we encoded a message = € IF]; into a multivariate polynomial
p: Fy' — F,. Prove the existence and uniqueness of p and explain how to find it efficiently.

(Know). Fix a € F" and consider a random curve I' : F; — F* of degree-k that passes through

a. That is, T'(t) = a + Y_'_, z;t' where the z;-s are chosen uniformly and independently from
', Prove that the random variables I'(1),...,T'(¢ — 1) are uniform and k-wise independent.

(Know). The Hadamard code Had is a [n = 2 k], code. For a string z € {0,1}", the w-th

coordinate of Had(z) € {0, 1}2k is (z,w) modulo 2, which we abbreviate as (z,w)s. Prove
that the Hadamard code has relative distance 1/2.

(Mandatory). Prove that the Hadamard code is d-locally decodable for § < 1/4. How many
queries do you have?

(Mandatory). Prove that Had : {0,1}F — {0,1}2k is (3+e, é)—list—decodable in time
poly(£).

Guidance: Let n = 2% and view f € {0,1}" as f : {0,1}* — {0,1}. Consider choosing
21y, 2m € {0,1}" uniformly at random and given i € {0, 1}k, outputting the majority
value among {f(z;) ® f(z; ®e)} jem)- This algorithm works (for a suitable choice of m)
when ¢ is high (say 0.4). Why? How can we adopt it to handle an arbitrarily small €?

(Mandatory). A function f: {0,1}* — {0,1}* is a one-way function if f can be computed by
a polynomial-time algorithm and for any probabilistic polynomial-time algorithm A and any
constant ¢, for every large enough n, it holds that Pryeqo 1y» [A(f(2),r) € f71(f(x))] <n~C.

Let f be a one-way function such that f is one-to-one. Prove that for every probabilistic
polynomial-time algorithm A there is a negligible function € = ¢(n) such that Pr, . [A(f(z),r) =
(x,1)9] <1/2+€.

(due to Kopparty) (Mandatory). Let d be an odd integer and let C be an [n, k, d]2 code. Show
that there exists a linear code C” that is a [n,k — 1,d + 1] code.

(due to Guruswami) (Bonus). Let 1 < k£ < n be integers and let p; < ... < p, be n
distinct primes. Denote K = Hle pi and N = [[;", p;. Consider the mapping E : Zg —
Lipy X ... X Lp, defined by:

E(m) = (m mod pq,...,m mod py).
(a) Suppose that m; # mg. For i € [n], define the indicator b; such that b; = 1 iff E(mq); #
E(my);. Prove that [, p% > N/K.
Deduce that when m; # ma, A(E(m1), E(m2)) >n—k+ 1.

(b) We will now adopt the Welch-Berlekamp algorithm to handle E. Suppose r = (r1,...,7,)
is the received word, where r; € Z,,.

i. Prove there can be at most one m € Zg such that

I »<vVN/E 1)

:E(m)#r;
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In what follows, let r be the unique integer in Zy such that » mod p; = r; for every
i € [n] (note that the Chinese Remainder theorem guarantees that there is a unique
such r).

ii. Assuming such an m exists, prove that there exist integers y, z with 0 <y < v NK
and 1 <z < /N/K such that y = rz (mod N).

iii. Prove that if y,z are any integers satisfying the above conditions, then in fact
m = y/z. Note that a pair of integers (y, z) satisfying the above can be found by
integer linear programming in a fixed number of dimensions in polynomial time.

(c) Instead of condition (1), what if we want to decode under the more natural condition:
[{i| E(m); #ri}| < ”T_k? Show how this can be done by calling the above decoder
many times and erasing the last ¢ symbols for each choice of i € [n].



HW 2 — Hardness implies derandomization

Out: 23.11.2016
Due: 11.12.2016

1. (Mandatory). Revisit the list-decoding algorithm for Reed-Solomon codes we gave in class,
and re-prove it taking care also of the output list size. That is, prove Theorem 6 from Lecture
2 (taken from [2]):

Theorem 1. There exists an algorithm that given as input:
e Code parameters: q, n < q, deg,

o A sequence of n distinct pairs {(cvi,yi)} iy, @i, yi € Fq and

2deg

n 7

e An agreement parameter T >

outputs a list of all polynomials p, . .., py of degree at most deg satisfying | {i € [n] : pj(c;) =i} | >
m™n. Furthermore, the list size £ is at most % The algorithm runs in time poly(n,logq).

Notice that the list {(,vi)};_; may have several values for the same «;.

2. (Mandatory). Prove that there exists an explicit [n, k]» code that is (3 + e, L) locally list-
decodable where n = poly(k,1/¢) and L = poly(n/e). Notice that the code is binary. The
(local) list-decoding procedure runs in time poly(log k, 1/¢).

For the proof you may take the Reed-Muller code we have analyzed in class, and concatenate
it with the Hadamard code. Also recall that Had is (% + €, é)—list—decodable.

3. (Know). Last item is Mandatory.

Prove that if there exists f € PSPACE with Size(f) > s(n) then for every e(n) > 0 there

exists another f’ € SPACE(poly(n,log 1)) such that Size%+€(f) > ;gfy/(lg))

The proofs puts together what we have done in class:

e Suppose f € PSPACE and Size(f) > s(n). Given f, : {0,1}" — {0,1} construct
f1, {0, 1} — {0,1} that extends f, and is supposed to be hard on average (and you
need the binary version as in the previous question). What is n’ as a function of n?
Show that { f{l,} € PSPACE by using Lagrange’s multi-variate interpolation.

e Assume (' is of size s’ and computes f’ correctly with % + € average-case success. Show
a randomized circuit computing f on inputs of length n, such that for every input it
succeeds with success probability 2/3. Which splitting point do you use?

e Get a deterministic circuit and conclude the theorem.

e For which of the classes PSPACE, E, EXP, NEXP, PSPACESAT ESAT EXPSAT NEXPSAT
this worst-case to average-case reduction holds?

4. (Know). Let ¢ > 0 and set 6 = ¢/2. Prove that there exists an integer ¢ such that given
access to a Boolean function on n® variables with circuit complexity at least n%, there is a
pseudorandom generator G : {0,1}" — {0,1}" computable in 2°("*) time which fools circuits
of size n.
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(Mandatory). Prove that if there exists a function f € E such that Size(f) = 2% then
BPP = P.

(Mandatory). Prove that if there exists f € E such that Size(f) = 2°4™ then MA = NP.

(Mandatory). [1] Let SizeT(f,,) be the minimal size of a circuit C' with oracle gates to SAT
that solves f, on inputs of length n.

Prove that if there exists f € E such that Size>AT(f) = 29" then AM = NP.
(Know). Let f:{0,1}" — {0,1} and suppose C : {0,1}" x {0,1} — {0,1} is a circuit such

that

Pr(Caf@)=1= P [Cb)=1]>0

Prove that there exists another circuit C’ : {0,1}" — {0,1} such that

Py (C'@)= (@] > 5 +6

(Mandatory). Prove that for every large enough n there exists a function f : {0,1}" — {0,1}
such that Size1  (f) > 21/10 for ¢ = 2—(n),
2

(Mandatory). Prove that (non-explicitly) there exists a (¢, a)-design Si,..., Sy, C [t] where
a=0(f?/t) and m = 290,

Two norm-one vectors vy, ve € R™ are almost orthogonal if |(vy,v2)| < e.

(a) (Mandatory). Show how to convert an (¢, a)-design St,..., S C [t] into:

e A set of m nearly orthogonal norm-one vectors.

e A binary error-correcting code of length ¢ with m codewords and large distance.
(b) (Mandatory). How many norm-one orthogonal vectors can one put into R%?

(¢c) (Mandatory). How many norm-one e-almost orthogonal vectors can one put into R%?
Give a lower bound.

(d) (Bonus). How many norm-one e-almost orthogonal vectors can one put into R%? Give
an upper bound. Can you reach tight estimations?

(Mandatory). Consider the parity function Parity : {0,1}* — {0,1}. It is known that for
every d, Parity cannot be computed on more than a % + 272 fraction of the inputs by
circuits of depth d and size 20(eH/%) (you do not need to prove this).

With that, prove that the class RAC? (of constant-depth, polynomial-size circuits that has
access to random input bits) is contained in | J, DSPACE(log® n).

(Mandatory). Prove: If there exists an (¢ = 1)-PRG G : {0, 1}* — {0,1}“" against circuits of
size s running in time exponential in ¢ then there exists a function f in EXP that is worst-case
hard for circuits of size s.



HW 3 — Non-uniform computation and the IKW theorem

Out: 11.12.2016
Due: 30.12.2016

1. (Mandatory). (Luca Trevisan) Let S(n) < 2-. Show a function f on n bits such that
f(n) = O(n) < Size(f) < f(n).

Mandatory). Prove: If P = NP then EXP Z P/poly.

Know). Prove: If NP C P/poly then PH C P/poly.

Know). Prove that NP = P implies 32 = P and PH = P.

Mandatory). Prove: If NP C BPP then BPP = PH.

(
(
(
(
(Mandatory). Prove: MA C AM.
(

N T

Know). Prove: Succinct3SAT is NEXP-complete (under polynomial-time reductions).
Hint: Recall the reduction from NP to SAT.

8. (Mandatory). Prove the following hierarchy theorems:

(a) For any fixed ¢, EXP € io-DTIME(2"™)/n°.
(b) If NEXP = EXP then there is a fixed d such that NTIME(2")/n C DTIME(Q”d)/n.

9. (Mandatory). We will prove that if NEXP = MA then NEXP C P/poly.

(a) Prove: If EXP Z P/poly then MA C io-NTIME(2").

(b) Prove: If NEXP = EXP then NEXP ¢ io-NTIME(2"")/n.

c¢) Conclude that if NEXP = MA then NEXP C P/poly.
)
)

(
10. (a) (Mandatory). Prove that coNEXP C NEXP /poly.
(b) (Bonus). Prove that if coNP C NP/poly then PH collapses to the third level.
11. (Mandatory). What is wrong with the following proof that NEXP Z P/poly:
Define ¥2EXP the class of languages solvable by JyVxo(z,y, z), where |y|,|z|,|¢(z,y, 2)| are
exponential in the size of |z|. Similarly define PH — EXP.
o If EXP = NEXP then EXP = PH — EXP. However, in PH — EXP there are languages not
in P/poly, hence: EXP = NEXP implies NEXP & P/poly.
e But, NEXP C P/poly implies NEXP = EXP = MA which implies NEXP Z P/poly. A

contradiction.
e Thus, we may conclude that NEXP Z P/poly.

12. (Mandatory). Prove that for every k, ¥4 contains a language that does not belong to SIZE(n*).
13. (Mandatory). (Arbel Admoni) Prove: If DTIME(n'°8™) C NP then NEXP Z P/poly.
14. (Mandatory). (Arbel Admoni) Prove: If NP = PH then NEXP ¢ P/poly.



HW 4 — Natural proofs, Promise problems, Hierarchies and Count-
ing classes

Out:  2.1.2017
Due: 22.1.2017

1. (Mandatory). Let H C F,, be the GGM construction with seed length & built using a PRG
G : {0,1}F = {0,1}*". Prove that if there exists a distinguisher running in time 20" that
e-distinguishes between the uniform distribution over H and the uniform distribution over F,

then there exists a distinguisher running in time 20" that e - 2~ "-distinguishes G(U},) and
Uzk-.

2. (Mandatory). Let AC°[2] denote the class of functions computable by a polynomial-size,
constant-depth circuits allowing Parity gates.

e Prove that for any integer d, there exists a family G, s C F},, where s is a seed of size

polynomial in n, such that every function in G, ¢ is in ACy[2] and G,, s looks random
for 20(")_size depth-d circuits, i.e., for any polynomial-size (in 2™) depth d circuit family
Cy 2 Fy — {0,1}, | Pr[C(F,) = 1] — Pr[C (G ) = 1]| < 27,

e Use question 12 from HW2 to prove that there is no lower bound proof which is AC’-
natural and useful against AC°[2].

3. (Mandatory). Suppose that the promise problem IT" is Cook-reducible to the promise problem
IT and the queries made by the reduction never violate the promise. Then, II € Promise-NP N
Promise-coNP implies IT" € Promise-NP N Promise-coNP.

4. (Mandatory). Use the randomness-efficient error amplification to prove that BPP C ZPPNP.
5. (Mandatory). Let d > 1 be some constant. Prove that if BPTIME(n?) = BPP then
BPTIME(t(n)) = BPTIME(¢t(n))
for every constant ¢ > 1 and time-constructible function ¢(n) that satisfies t(n) > n¢.

6. (Mandatory). Let ¢(n) and T'(n) be time-constructible functions such that there exists a
constant k for which T®)(t(n)) = 2¢((") Then, BPTIME(t(n)) C BPTIME(T'(t(n))).

7. (Fortnow) (Mandatory). The class GapP is the class of functions f such that for some NP
machine M, f(z) is the number of accepting paths minus the number of rejecting paths of
M on z. The class FP represent the class of polynomial-time computable functions.

Prove that for all functions f, the following are equivalent:

f € GapP.

f is the difference of two #P functions.

(a)
(b)
()
(d)

f is the difference of a #P function and an FP function.
f is the difference of an FP function and a #P function.

8. (Fortnow) (Mandatory). Let f be a GapP function and ¢ a polynomial. Prove that the
following are GapP functions:



(@) 2jyi<q(al) f(@9)-
(b) To<y<q(ia) f(z:9)-
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