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Abstract

Restricting the search space {0,1}" to the set of truth tables of “easy” Boolean functions
on logn variables, as well as using some known hardness-randomness tradeoffs, we establish
a number of results relating the complexity of exponential-time and probabilistic polynomial-
time complexity classes. In particular, we show that NEXP C P/poly & NEXP = MA; this
can be interpreted as saying that no derandomization of MA (and, hence, of promise-BPP) is
possible unless NEXP contains a hard Boolean function. We also prove several downward closure
results for ZPP, RP, BPP, and MA; e.g., we show EXP = BPP < EE = BPE, where EE is the
double-exponential time class and BPE is the exponential-time analogue of BPP.

1 Introduction

One of the most important question in complexity theory is whether probabilistic algorithms are
more powerful than their deterministic counterparts. A concrete formulation is the open question

of whether BPP = P. Despite growing evidence that BPP can be derandomized (i.e., simulated
deterministically) without a significant increase in the running time, so far it has not been ruled
out that NEXP = BPP.
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A number of conditional derandomization results are known which are based on the assumption
that EXP contains hard Boolean functions, i.e., those of “high” circuit complexity [NW94, BENW93,
ACR98, IW97, STV99]. For instance, it is shown in [[W97] that BPP = P if DTIME(2°(")) contains
a language that requires Boolean circuits of size 2°4(™). Results of this form, usually called hardness-
randomness tradeoffs, are proved by showing that the truth table of a “hard” Boolean function can
be used to construct a pseudorandom generator, which is then used to derandomize BPP or some
other probabilistic complexity class. It is well known that such pseudorandom generators exist
if and only if there exist hard Boolean functions in EXP. However, it is not known whether the
existence of hard Boolean functions in EXP is actually necessary for derandomizing BPP. That is,
it is not known if BPP C SUBEXP = EXP ¢ P/poly.

Obtaining such an implication would yield a “normal form” for derandomization, because
hardness-vs.-randomness results actually conclude that BPP can be derandomized in a very specific
way. Think of a probabilistic algorithm, after fixing its input z, as defining a Boolean function
fz(r) on the “random bits” r. Since the algorithm is fast, we know f, is “easy”, i.e., has low
circuit complexity. For an algorithm accepting a language L in BPP, f, is either almost always 1
(if z € L) or almost always 0 (otherwise). To decide which, it suffices to approximate the fraction
of r’s with f,(r) = 1 to within a constant additive error. To do this, the derandomization first
computes all possible sequences that are outputs of a generator G, say ri,...,7, and tries f;(r;)
for each 7. (If G is a pseudo-random generator, the final output is the majority of the bits f(r;).
Other constructions such as the hitting-set derandomization from [ACR98] are more complicated,
but have the same general form.)

In particular,

1. We never use the acceptance probability guarantees for the algorithm on other inputs. Thus,
we can derandomize algorithms even when acceptance separations aren’t guaranteed for all
inputs, i.e., we can derandomize promise-BPP ([For01, KRCO00]). Intuitively, this means that
randomized heuristics, that only perform well on some inputs, can also be simulated by a
deterministic algorithm that performs well on the same inputs as the randomized algorithm.

2. The derandomization procedure only uses f, as an oracle. Although its correctness relies on
the existence of a small circuit computing f, the circuit itself is only used in a “black box”
fashion.

Derandomization along the lines above is equivalent to proving circuit lower bounds, which
seems difficult. One might hope to achieve derandomization unconditionally by relaxing the above
restrictions. In particular, one could hope that it is easier to approximate the acceptance probability
of a circuit using the circuit itself than it is treating it as a black box. In fact, recent results
indicate that, in general, having access to the circuit computing a function is stronger than having
the function as an oracle ([BGI*T01, Bar01]).

However, we show that this hope is ill-founded: for nondeterministic algorithms solving the
approximation problem for circuit acceptance, oracle access is just as powerful as access to the
circuit. In particular, any (even nondeterministic) derandomization of promise-BPP yields a circuit
lower bound for NEXP, and hence a “black-box” circuit approximation algorithm running in non-
deterministic subexponential time. Thus, unconditional results in derandomization require either
making a distinction between BPP and promise-BPP, or proving a circuit lower bound for NEXP.

More precisely, we show that NEXP C P/poly = MA = NEXP, and hence no derandomization
of MA is possible unless there are hard functions in NEXP. Since derandomizing promise-BPP also
allows one to derandomize MA, the conclusion is that no full derandomization result is possible
without assuming or proving circuit lower bounds for NEXP.



Another piece of evidence that it will be difficult to show EXP # BPP (or NEXP # MA)
comes from the downward closure results for these classes. It is a basic fact in computational
complexity that the equalities of complexity classes “translate upwards”. For example, if NP = P,
then NEXP = EXP by a simple padding argument. Thus, a separation at a “higher level” implies
a separation at a “lower level”, which suggests that “higher-level” separations are probably harder
to prove. We show that separating EXP from BPP is as hard as separating their higher time-
complexity analogues. More precisely, we show that EXP = BPP iff EE = BPE, where EE is the
class of languages accepted in deterministic time 227 and BPE is the 2°0()_time analogue of BPP.
We prove similar downward closures for ZPP, RP, and MA. !

Main Techniques One of the main ideas that we use to derive our results can be informally
described as the “easy witness” method, invented by Kabanets [Kab01l]. It consists in searching
for a desired object (e.g., a witness in a NEXP search problem) among those objects that have
concise descriptions (e.g., truth tables of Boolean functions of low circuit complexity). Since there
are few binary strings with small descriptions, such a search is more efficient than the exhaustive
search. On the other hand, if our search fails, then we obtain a certain “hardness test”, an efficient
algorithm that accepts only those binary strings which do not have small descriptions. With such
a hardness test, we can guess a truth table of a hard Boolean function, and then use it as a source
of pseudorandomness via known hardness-randomness tradeoffs.

Recall that the problem Succinct-SAT is to decide whether a propositional formula is satisfiable
when given a Boolean circuit which encodes the formula (e.g., the truth table of the Boolean
function computed by the circuit is an encoding of the propositional formula); it is easy to see that
Succinct-SAT is NEXP-complete. Thus, the idea of reducing the search space for NEXP problems
to “easy” witnesses is suggested by the following natural question: Is it true that every satisfiable
propositional formula that is described by a “small” Boolean circuit must have at least one satisfying
assignment that can also be described by a “small” Boolean circuit? We will show that this is indeed
the case if NEXP C P/poly.

This idea was applied in [Kab01] to RP search problems in order to obtain certain “uniform-
setting” derandomization of RP. In this paper, we consider NEXP search problems, which allows
us to prove our results in the standard setting.

Remainder of the paper In Section 2, we present the necessary background. In Section 3, we
describe our main technical tools. In particular, as an application of the “easy witness” method,
we show that nontrivial derandomization of AM can be achieved under the uniform complexity
assumption that NEXP # EXP (cf. Theorem 18), where the class AM is a probabilistic version of
NP (see the next section for the definitions).

In Section 4, we prove several results on complexity of NEXP. In particular, Section 4.1 contains
the proof of the equivalence NEXP C P/poly & NEXP = MA. In Section 4.2, we show that every
NEXP search problem can be solved in deterministic time 2P°Y(™) if NEXP = AM; we also prove
that, if NEXP C P/poly, then every language in NEXP has membership witnesses of polynomial
circuit complexity.

Section 5 contains several interesting implications of our main result from Section 4.1 for the
circuit approximation problem and natural proofs.

In Section 6, we establish our downward closure results for ZPP, RP, BPP, and MA. We also
prove “gap” theorems for ZPE, BPE, and MA; in particular, our gap theorem for ZPE states that

1Such closure results were also obtained by Fortnow and Miltersen [Fortnow, personal communication, July 2000],
independently of our work.



either ZPE = EE, or ZPE can be simulated infinitely often in deterministic sub-double-exponential
time.
Concluding remarks and open problems are given in Section 7.

2 Preliminaries

2.1 Complexity Classes

We assume that the reader is familiar with the standard complexity classes such as P, NP, ZPP,
RP, and BPP (see, e.g., [Pap94]). We will need the two exponential-time deterministic complexity
classes E = DTIME(29(™) and EXP = DTIME(2P?Y(") and their nondeterministic analogues NE
and NEXP. We define SUBEXP = N5oDTIME(2"") and NSUBEXP = N oNTIME(2""). We will
use the “exponential-time analogues” of the probabilistic complexity classes BPP, RP, and ZPP:
BPE = BPTIME(2°(™), RE = RTIME(2°(), and ZPE = ZPTIME(2°™). We also define the
double-exponential time complexity classes EE = DTIME(22°™), NEE = NTIME(22°"), and the
classes SUBEE = N¢>oDTIME(22™) and NSUBEE = NoNTIME(2%").

We shall also need the definitions of the classes MA and AM [Bab85, BM88]. The class MA can
be viewed as a “nondeterministic version” of BPP, and is defined as follows. A language L C {0, 1}*
is in MA iff there exists a polynomial-time decidable predicate R(x,y, z) and a constant ¢ € N such
that, for every = € {0,1}", we have

reL=3Iye {01} : Pr .oy [R(z,y,2) =

2/3, and
r ¢ L=Vye{01}™ : Pr,cqoye[R(z,y,2) = 1
The class AM, a “probabilistic version” of NP, consists of all binary languages L for which there is a
polynomial-time decidable predicate R(z,y, z) and a constant ¢ € N such that, for every z € {0,1}",
we have

2/3, and

rel = PrzG{U,l}”c [Hy € {07 1}nc : R($7yaz) =
x, 1/3.

& L= Pr,cgyn[Fy € {0, 13 R(z,y, 2)

We shall also use the exponential-time version of MA, denoted as MA-E, where the strings y and z
from the definition of MA are of length 2¢*, rather than n°.

For an arbitrary function s : N — N, we define the nonuniform complexity class SIZE(s)
to consist of all the families f = {f,}n>0 of n-variable Boolean functions f, such that, for all
sufficiently large n € N, f;, can be computed by a Boolean circuit of size at most s(n). Similarly,
for any oracle A, we define the class SIZE(s) to contain the families of n-variable Boolean functions
computable by oracle circuits of size at most s(n) with A-oracle gates.

Let C be any complexity class over an alphabet ¥. We define the class C/poly to consist of
all languages L for which there is a language M € C and a family of strings {yn}n>0, where
yn € XPY(™) guch that the following holds for all z € X™:

1] >
1] <

z €L (z,y,) € M.

More generally, for any function ¢ : N — N, we define the class C/t by requiring that v, € »On),
Finally, for an arbitrary complexity class C over an alphabet ¥, we define

io-C ={L C ¥* | 3M € C such that L N X" = M N X" infinitely often}.



2.2 Nondeterministic Generation of Hard Strings

As we shall see below, the truth table of a hard Boolean function can be used in order to approximate
the acceptance probability of a Boolean circuit of appropriate size. Thus, an “efficient” algorithm
for generating hard strings (the truth tables of hard Boolean functions) would yield an “efficient”
derandomization procedure for probabilistic algorithms.

Usually, one talks about deterministic algorithms for generating hard strings. For example, the
existence of such algorithms follows from the assumptions such as EXP ¢ P/poly or E ¢ SIZE(2°(").
In some cases, however, we can afford to use nondeterministic algorithms for generating hard strings.
We formalize this with the following definition.

We say that a Turing machine M nondeterministically generates the truth table of an n-variable
Boolean function of circuit complexity at least s(n), for some function s : N — N, if on input 1"

1. there is at least one accepting computation of M, and

2. whenever M enters an accepting state, the output tape of M contains the truth table of some
n-variable Boolean function of circuit complexity at least s(n).

The following lemma will be useful.

Lemma 1. Suppose NEXP ¢ P/poly. Then there is a poly(2™)-time Turing machine which, given
an advice string of size n, nondeterministically generates 2"-bit truth tables of n-variable Boolean
functions fn, satisfying the following: for every d € N and infinitely many n € N, f,, has circuit
complezity greater than n®.

Proof. By a simple padding argument, we have that NEXP ¢ P/poly implies NE ¢ P/poly. Let
L € NE\P/poly be any language. Suppose also that z,, is the binary encoding of the cardinality ¢, =
|L N {0, 1}"|; obviously, the length of z,, is at most logy 2" = n. Then we can nondeterministically
construct the truth table of the Boolean function deciding L N {0, 1}" with the following algorithm
B. Given z, as advice, B nondeterministically guesses ¢, strings y; € L N {0,1}" together with
their certificates z; € {0, 1}20@)‘ After B verifies the correctness of its guess, it outputs the 2™-bit
binary string ¢ which has 1 in exactly those positions that correspond to the guessed y;’s, and 0
elsewhere. O

As follows from the proof Lemma 1, the nondeterministic algorithm B, given appropriate advice,
generates a unique truth table for every n. In general, however, we will allow our nondeterministic
generating algorithm to output different hard strings on different accepting computation paths.

2.3 Hierarchy Theorems

We shall need several separation results that are provable by diagonalization.
Theorem 2. For any fizred ¢ € N, EXP ¢ i0-SIZE(n®).

Proof. By counting, we have that, for all sufficiently large n € N, there is an n-variable Boolean
function of circuit complexity 2n¢ > n® The lexicographically first circuit of size 2n¢ with no
equivalent circuit of size n® can be constructed in deterministic exponential time by brute force
search. We apply this circuit to the input. ]

Theorem 3. For any fized ¢ € N, EXP & io-[DTIME(2"") /n¢].



Proof. For a given n € N, let S), be the set of the truth tables of all n-variable Boolean functions
computable by some deterministic 2"°-time Turing machine of description of size n that uses an
advice string of size at most n°. Note that |S,| < 22"°. Define the truth table t = ¢, ...ton of an
n-variable Boolean function not in S, as follows. The first bit ¢; has the value opposite to that of
the first bit of the majority of strings in S,,. Let S} be the subset of S, that contains the strings
with the first bit equal to ¢1; the size of S}L is at most a half of the size of S,,. We define ¢ to
have the value opposite to that of the second bit of the majority of strings in S!; this leaves us
with the subset S2 of S! of half the size. After we have eliminated all the strings in S,, (which
will happen after at most 2n° 4 1 steps), we define the remaining bits of ¢ to be 0. We define
L € EXP by, for every z € {0,1}", © € L iff the corresponding position in ¢ is 1. By construction,
L ¢ io-[DTIME(2™) /n€]. O

Theorem 4. For any fized ¢ € N, EE Z io-[DTIME(22") /en].

Proof. Define a language as follows. On inputs of length n, we construct all truth tables of the first
n Turing machines run for time 22 with all advice strings of length c¢n or smaller; there are at
most n2"t! « 22" such truth tables. Then we enumerate all 22" possible truth tables of n-variable
Boolean functions, and use the first one that is not on our list. We output the value of our input
in this table. O

We shall need the following auxiliary lemmas whose proof relies on the existence of universal
Turing machines.

Lemma 5. If NEXP C P/poly, then there is a fized constant dy € N such that NTIME(2")/n C
SIZE(n).

Proof. Let L € NTIME(2")/n be any binary language. Then there is a language M € NTIME(2")
and a sequence {y, }n>0 of binary strings v, € {0,1}" such that, for every z € {0,1}",

z€L s (r,yn) € M.

Consider the following nondeterministic Turing machine U. On input (i,x) of size n, where
i € Nand z € {0,1}*, the machine U runs in time 22", simulating the ith nondeterministic Turing
machine M; on input z; the machine U accepts iff M; accepts.

By assumption, there is some constant k£ € N such that the language of U can be decided by
Boolean circuits of size n* almost everywhere. It follows that every language M € NTIME(2") can
be decided by Boolean circuits of size (|i| + n)¥ € O(n*), where i is the constant-size description
of a nondeterministic 2"-time Turing machine deciding M. Consequently, every language L €
NTIME(2")/n can be decided by Boolean circuits of size O((2n)¥), which is in O(n¥). The claim
follows if we take dy = k + 1. O

Lemma 6. If NEXP = EXP, then there is a fized constant dy € N such that NTIME(2")/n C
DTIME(2"°) /n.

Proof. For an arbitrary L € NTIME(2")/n, there is a nondeterministic 2"-time Turing machine M
and a sequence of n-bit advice strings a,, such that an n-bit string = € L iff M (z,a,) accepts.

Let U be the universal Turing machine for the class NTIME(2"). By the assumption NEXP =
EXP, we get that there is a constant & € N such that the language of U is in DTIME(Q”k). The
universality of U implies that the language of M is in DTIME(2”d°), for dg =k + 1. O



Lemma 7. If NEE = EE, then there is a fived constant dy € N such that NTIME(22")/n C
DTIME(22") /n.

Proof. The proof is virtually identical to that of Lemma 6. U
Combining the hierarchy theorems and the auxiliary lemmas above, we obtain the following.
Corollary 8. If NEXP C P/poly, then EXP Z io-[NTIME(2")/n].

Proof. If NEXP C P/poly, then, by Lemma 5, there is a fixed dy € N such that NTIME(2")/n C
SIZE(n%). The claim now follows by Theorem 2. O

Corollary 9. If NEXP = EXP, then NEXP Z io-[NTIME(2")/n].

Proof. If NEXP = EXP, then, by Lemma 6, there is a fixed constant dy € N such that NTIME(2")/n C
DTIME(2”d°)/ n. Applying Theorem 3 concludes the proof. O

Corollary 10. If NEE = EE, then NEE € io-[NTIME(22")/n)].

Proof. If NEE = EE, then, by Lemma 7, there is a fixed constant dy € N such that NTIME(22")/n C
DTIME(22d°n)/n. By Theorem 4, the conclusion is immediate. O

2.4 Pseudorandom Generators and Conditional Derandomization

For more background on pseudorandom generators and derandomization, the reader is referred to
the book by Goldreich [Gol99], as well as the surveys by Miltersen [Mil01] and Kabanets [Kab02].
A generator is a function G : {0,1}* — {0,1}* which maps {0,1}'(™ to {0,1}", for some
function 7 : N — N; we are interested only in the generators with [(n) < n.
For any oracle A, we say that a generator G : {0, 11" — {0,1}" is SIZE*(n)-pseudorandom
if, for any n-input Boolean circuit C of size 2 n with A-oracle gates, the following holds:

Proc(01yn [C(G(2)) = 1] = Pryego [Cly) = 1] < 1/n.

For the case of the empty oracle A, we will omit the mention of A and simply call the generator
SIZE(n)-pseudorandom.

Finally, we call a generator G : {0,1}(") — {0,1}" quick if its output can be computed in
deterministic time 2°0(),

Theorem 11 ([BFNW93, KM99]). There is a polynomial-time computable function F : {0,1}* x
{0,1}* — {0,1}* with the following properties. Let A be any oracle. For every e > 0, there exist
0 < € and d € N such that

77,6 €
F {013 x{0,1}" = {0,1}",
and if v is the truth table of an n’-variable Boolean function of A-oracle circuit complezity at least

n%, then the function G.(s) = F(r,s) is a SIZE*(n)-pseudorandom generator mapping {0,1}™
into {0,1}™.

2Such a circuit C' may not use some of its n inputs.



As observed in [Yao82, NW94], a quick SIZE(n)-pseudorandom generator G : {0,1}"" — {0,1}"
allows one to simulate every BPP algorithm in deterministic time 2”’“, for some k£ € N. Goldreich
and Zuckerman [GZ97] show that a quick SIZE(n)-pseudorandom generator G : {0,1}™ — {0,1}"
allows one to decide every MA language in nondeterministic time 2”’“, for some £ € N. Thus,
if we can “efficiently” generate the truth tables of Boolean functions of superpolynomial circuit
complexity, then we can derandomize MA, by placing it in nondeterministic subexponential time.
Note that, for the case of BPP, we need a deterministic algorithm for generating hard Boolean
functions, but, for the case of MA, a nondeterministic algorithm suffices.

Theorem 11 readily implies the following.

Theorem 12. 1. Suppose that there is a poly(2™)-time Turing machine which, given an advice
string of size a(n) for some a : N — N, nondeterministically generates 2"-bit truth tables of
n-variable Boolean functions f, satisfying the following: for every d € N and all sufficiently
large n € N, f, has circuit complexity greater than n®. Then, for every e > 0, MA C
NTIME(2™)/a(n¢).

2. If the Boolean functions f, from Statement (1) above are such that, for every d € N and

infinitely many n € N, f, has circuit complezity greater than n®, then, for every e > 0,
MA C io-[NTIME(2™)/a(n€)].

Klivans and Van Melkebeek [KM99] show that a quick SIZESAT(n)-pseudorandom generator
G :{0,1}™ — {0,1}" allows one to simulate every language in AM in nondeterministic time on**
for some £ € N. Thus, if the truth tables of Boolean functions of superpolynomial SAT-oracle
circuit complexity can be generated nondeterministically in time polynomial in their length, then
AM C NSUBEXP (see also [MV99] for derandomization of AM under weaker assumptions). More
precisely, we have the following.

Theorem 13 (following [KM99]). 1. Suppose there is a poly(2™)-time algorithm which, given
an advice string of length at most a(n) for some a : N — N, nondeterministically generates
2™-bit truth tables of n-variable Boolean functions fy satisfying the following: for every d € N
and all sufficiently large n € N, f, has SAT-oracle circuit complezity greater than n®. Then,
for every e > 0, AM C NTIME(2"") /a(n¢).

2. If the functions f, from Statement (1) above are such that, for every d € N and infinitely
many n € N, f, has SAT-oracle circuit complexity greater than n®, then, for every e > 0,
AM C io-[NTIME(2"") /a(n¢)].

Stronger derandomization results hold for BPP, MA, and AM, under stronger complexity as-
sumptions. In particular, Impagliazzo and Wigderson [[W97] show that a quick SIZE(n)-pseudorandom
generator G : {0,1}°0°86™) _ £0,1}" can be constructed from a given truth table of a O(logn)-
variable Boolean function of circuit complexity at least n*(!). Since this result relativizes (see [KM99]),
we get the following.

Theorem 14 ([IW97, KM99]). There is a polynomial-time computable function F : {0,1}* x
{0,1}* — {0,1}* with the following properties. Let A be any oracle. For every e > 0, there exist
¢,d € N such that

F:{0,1}™ x {0,1}%18™ — {0, 1}",

and if r is the truth table of an clogn-variable Boolean function of A-oracle circuit complexity
at least <, then the function G.(s) = F(r,s) is a SIZE*(n)-pseudorandom generator mapping

{0,1}%1°8™ jnto {0,1}".



Note that if there is a deterministic poly(2")-time algorithm that generates the truth tables
of n-variable Boolean functions of circuit complexity at least 2%("), then BPP = P; and if this
algorithm is zero-error probabilistic, then BPP = ZPP.

We also have the following version of Theorem 13.

Theorem 15 ([KM99]). 1. Suppose there is a constant € > 0 and a poly(2")-time algorithm
which, given an advice string of length at most a(n) for some a : N — N, nondeterministically
generates 2"-bit truth tables of n-variable Boolean functions f, satisfying the following: for
all sufficiently large n € N, f, has SAT-oracle circuit complexity ot least 2. Then AM C
NP/a(O(logn)).

2. If the functions f, from Statement (1) above are such that, for infinitely many n € N, f, has
SAT-oracle circuit complezity at least 2", then we have AM C io-[NP/a(O(logn))].

3 Owur Main Tools

3.1 Easy Witnesses and Hard Functions

In several applications below, we will need to decide whether a polynomial-time checkable relation
R(z,y) has a satisfying assignment (witness) y € {0,1}* for a given input z € {0,1}*, where
ly| = I(|z]) for some function [ : N — N. That is, we need to compute the Boolean function fg(z)
defined by

fr(z) = 1iff 3y € {0,1}402D : R(z,y) holds.

To simplify the notation, we shall assume that [(n) = 2", i.e., that fr(z) is the characteristic
function of a language in NE. Our approach will be to enumerate all possible truth tables ¢ of
Boolean functions on n = |z| variables that are computable by A-oracle circuits of size s(n), for
some oracle A € EXP and a function s : N — N (where s(n) > n) and check whether R(z, ) holds
for at least one of them.

Let T4 s(n) denote the set of truth tables of n-variable Boolean functions computable by A-
oracle circuits of size s(n). Then, instead of computing fr(z), we will be computing the following
Boolean function fR,A,s(ac):

froas(z) =1iff Jy € Ta(|z]) : R(x,y) holds.

The following easy lemma shows that the set T4 4(n) can be efficiently enumerated.

Lemma 16. For any fized oracle A € EXP, there is a constant ¢ € N such that the set Ty 4(n) can
be enumerated in deterministic time 25™°, for any function s : N — N.

Proof. Let A € DTIME(2”d) for some d € N. Then the value of an A-oracle circuit on an n-bit input
can be computed in deterministic time poly(s(n))2¢(™)?  since the circuit of size s(n) can query the
oracle A on strings of size at most s(n), and these oracle queries can be answered by running the
deterministic 27’ -time Turing machine deciding A. Thus, the truth table of an n-variable Boolean
function computed by such a circuit can be found in deterministic time 2”po|y(s(n))2(s(”))d, by
evaluating the circuit on each n-bit input. Since the total number of A-oracle circuits of size s is
at most 2061°85) the lemma follows. O



It follows that the Boolean function fAR7 A,s defined above is computable in deterministic time
25(”)d, for some d € N, which is less than the trivial upper bound 2022 (of a “brute-force”
deterministic algorithm for fz(z)) whenever s(n) € 2°("). For example, if 5(n) € poly(n), then the
function fR7 A,s 1s computable in deterministic time 2”°'y("), ie., fAR7 A,s is the characteristic function
of a language in EXP. If fp = f R,A,s, then we get a nontrivial deterministic algorithm for computing
fr- If fp# fR, A5, then we get a nondeterministic poly(2")-time algorithm which, given a “short”
advice string, generates the truth table of an n-variable Boolean function of “high” A-oracle circuit
complexity. More precisely, the following is true.

Lemma 17. Let R(x,y) be any polynomial-time decidable relation defined on {0,1}" x {0,1}%",
let A € EXP be any language, and let s : N — N be any function. Let fr(z) and fR,Ays(:E) be
the Boolean functions defined above. If fr # fARyA,S, then there is a nondeterministic poly(2")-
time algorithm B and o family {x,}n>0 of n-bit strings with the following property: for infinitely
many n € N, the algorithm B on advice z,41 nondeterministically generates the truth table of an
n-variable Boolean function of A-oracle circuit complexity greater than s(n).

Proof. If fr # fR,A,s, then for infinitely many n € N there exists a string z, € {0,1}" such that
fr(zn) =1 but fR,A,s(zn) = 0. For those n € N where such a string z, exists, we define z,,11 = 1z,
(i.e., the string z, preceded with a 1); for the remaining n € N, we define z,,,1 = 0"*!.

It is easy to see that the following nondeterministic algorithm B is the required one: on input
1z € {0,1}"*!, nondeterministically guess a y € {0,1}2", verify that R(z,y) holds, output y, and
halt in the accepting state; on input 0"*!, output 02", and halt in the accepting state. U

Using the relationship between Boolean functions of high circuit complexity and pseudorandom
generators that was described in Section 2.4, we obtain that if fr # fr 4, for some A € EXP and
s(n) € nfM) | then certain derandomization of probabilistic algorithms is possible. For example,

Lemma 17 yields the following derandomization result for AM, based on the assumption that
NEXP # EXP.

Theorem 18. If NEXP # EXP, then, for every e > 0, we have AM C io-[NTIME(2"") /n¢]. 3

Proof. Tt follows by a simple padding argument that if for every polynomial-time decidable relation
R(x,y) defined on {0,1}" x {0,1}2" there is a d € N such that fr = fRysAT,nd, then NEXP C EXP.
Hence, our assumption that NEXP # EXP implies, by Lemma 17, that there is a poly(2™)-time
algorithm which, given an advice string of length a(n) = n + 1, nondeterministically generates the
truth table of an n-variable Boolean function f, such that, for every d € N, there are infinitely
many n where f, has SAT-oracle circuit complexity greater than n¢. The claim now follows by
Theorem 13 (statement 2). O

Under a stronger assumption, we show that AM = NP. The same conclusion is known to hold
under certain nonuniform hardness assumptions [KM99, MV99], and the assumption that NP is
hard in a certain “uniform” setting [Lu01].

Theorem 19. If NE N coNE € io-DTIME(2%") for some € > 0, then AM = NP.

Proof. Consider all pairs (R4, R_) of polynomial-time decidable relations defined on {0,1}" x
{0,1}*" such that fr, (z) = ~fr_(z) for all z € {0,1}". If, for every such pair (R, R_) and every

3We should note that this is a very weak conditional derandomization result for AM, since it is known uncondi-
tionally that AM C NP/poly and, obviously, AM C EXP C NEXP.
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€ > 0, there are infinitely many n where fr (z) = fR+,SAT,26n (z) for all z € {0,1}", then we get
by a simple padding argument that, for every € > 0, NE N coNE C io-DTIME(2%"). Thus, under
the assumption of the theorem, there is a pair (R4, R_) of polynomial-time decidable relations
defined on {0,1}" x {0,1}?" such that, for some € > 0 and all sufficiently large n, we have fg, () #
fR_’_,SAT’QSn (x) for at least one x € {0,1}". This implies that there is a poly(2")-time algorithm
B that nondeterministically generates 2™-bit truth tables of n-variable Boolean functions f, such
that, for all sufficiently large n, f, has SAT-oracle circuit complexity 28Un).

Indeed, let {0,1}" = {x1,..., 290}, let y1,...,y2n € {0,1}?" be any strings such that R, (z;,1;) =
lor R (zj,y;) =1forall 1 <i<2" and let Y = y;...ysn be the concatenation of all the y;’s.
Note that such a Y can be found nondeterministically in time 2°("). Tt is clear that, for all suffi-
ciently large n, such a string Y is the truth table of an 2n-variable Boolean function of SAT-oracle
circuit complexity greater than 2¢. Hence, the existence of the required algorithm B follows.

Applying Theorem 15 (statement 1) with a(n) = 0, we conclude that AM = NP. O

Essentially the same argument as in Theorem 19 (but using Theorem 13 (statement 2) instead
of Theorem 15 (statement 1)), we also get the following.

Theorem 20. If NEXP N coNEXP # EXP, then AM C io-NTIME(2"), for every e > 0.

3.2 P-Sampleable Distributions and Padding

A family of probability distributions p@ = {jn}n>0 is P-sampleable if there is a polynomial p(n)
and a polynomial-time Turing machine M such that the following holds: if r € {0,1}?(") is chosen
uniformly at random, then the output of M(n,r) is an n-bit string distributed according to p,.

For any language L C {0, 1}*, we define its characteristic function xr, : {0,1}* — {0, 1} so that
xo(x)=1iff z € L.

Lemma 21. Suppose that, for every language L € BPP, every € > 0, and every P-sampleable distri-
bution family i1 = {iin }n>0, there is a deterministic 2" -time algorithm A such that Pry.,, [A(z) #
xz(z)] < 1/n for infinitely many n € N. Then, for every e > 0, BPE C io-[DTIME(2%") /n].

Proof. Let € > 0 be arbitrary. We define a padded version of any given language L € BPE by
Lpag = {z02° =17+ | z € I, 0 < i < 21°l}. Clearly, Lpaq € BPP.

Note that, for every n € Nand 0 < i < 2", the number of “interesting” strings y = 202" %%, for
some z € {0,1}", is 2", which is at most their length m = 2" 4 . Hence, the uniform distribution
tm on the set of such y’s will assign each y the probability at least 1/m. It is easy to see that this
probability distribution is P-sampleable: for m = 2" + 4, where 0 < 7 < 2", and r € {0,1}", we
define M (m,r) to output 0™ ™.

By the assumption, there is a 2™ -time algorithm A such that, for infinitely many m € N,
Pryc 4, [A(Y) # XL,a(y)] < 1/m. For infinitely many m = 2" + 4, where 0 < ¢ < 2", this
algorithm A must be correct on every string y = 202" ~"%%, since each such y has probability at
least 1/m according to p,. Thus, there are infinitely many lengths n € N such that, for some
0 < i < 27, we have for every = € {0,1}" that A(z0%"~"*%) = x (7). Using the n-bit encodings
of such ’s as advice, we obtain a deterministic algorithm with linear-length advice that runs in
sub-double-exponential time and correctly decides L infinitely often. O

4 Complexity of NEXP
In this section, we prove several theorems relating uniform and nonuniform complexity of NEXP.
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4.1 NEXP versus MA

Babai, Fortnow, and Lund [BFL91, Corollary 6.10], based on an observation by Nisan, improved a
result of Albert Meyer [KL82] by showing the following.

Theorem 22 ([BFL91]). EXP C P/poly = EXP = MA.
Here we will prove
Theorem 23. NEXP C P/poly & NEXP = MA.

Buhrman and Homer [BH92] proved that EXPNP ¢ P/poly = EXPNP = EXP 4, but left open
the question whether NEXP C P/poly = NEXP = EXP. Resolving this question is the main step in
our proof of Theorem 23.

Theorem 24. If NEXP C P/poly, then NEXP = EXP.
Proof. Our proof is by contradiction. Suppose that
NEXP c P/poly, (1)
but
NEXP & EXP. (2)

By Theorem 22, we get that assumption (1) implies that EXP = AM = MA. By Theorem 18,
we get from assumption (2) that, for every € > 0, AM C io-[NTIME(2"")/n¢]. Combining the two
implications, we get that EXP C io-[NTIME(2")/n]. This and assumption (1) contradict Corollary 8.

U

Corollary 25. If NEXP C P/poly, then NEXP = MA.
Proof. If NEXP C P/poly, then NEXP = EXP by Theorem 24, and EXP = MA by Theorem 22. [

Remark 26. Buhrman, Fortnow, and Thierauf [BFT98] show that MA-E ¢ P/poly. Combined
with a simple padding argument, their result yields the following implication: MA = NP = NEXP ¢
P/poly. Our Corollary 25 is a significant strengthening of this implication.

The other direction of Theorem 23 was proved by Dieter van Melkebeek [van Melkebeek, per-
sonal communication, September 2000].

Theorem 27 (van Melkebeek). If NEXP = MA, then NEXP C P/poly.
Proof. Suppose that
NEXP = MA, (3)
but
NEXP ¢ P/poly. (4)

The assumption (3) implies that NEXP = EXP, and so by (4) we get that EXP ¢ P/poly. By
Theorem 11, the latter yields that MA C io-NTIME(2"). Applying Corollary 9 concludes the
proof. O

Proof of Theorem 23. The proof follows immediately from Corollary 25 and Theorem 27. U

*Actually, their result is even stronger: EXPN? € EXP/poly = EXP"? = EXP.
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4.2 Search versus Decision for NEXP

It is well known that if NP = P, then every NP search problem can be solved in deterministic
polynomial time. Here, by an NP search problem, we mean the problem of finding, for a given
input string x, a witness string y of length at most polynomial in the length of = such that R(z,y)
holds, where R(z,y) is a polynomial-time decidable binary relation. Assuming that NP = P, we
can find such a string y in polynomial time, fixing it “bit by bit”. That is, we find y by asking a
series of NP questions of the form: “Is there a y with a prefix yy such that R(z,y)?”

The same approach fails in the case of NEXP search problems. Suppose that NEXP = EXP. Let
R(x,y) be a predicate decidable in time 2P°Y(]) and the NEXP search problem is to find, given a
string z, a witness string y of length at most 2P°Y(I%D such that R(z,y) holds. When we attempt
to find a y satisfying R(x,y) by encoding prefixes yy of y as part of the instance, we eventually get
an instance whose size is exponential in |z|, the size of the original instance. Being able to solve
such an instance in deterministic exponential time would only give us a double-exponential time
algorithm for solving the original search problem, which is not better than solving it by “brute
force”.

Thus, apparently, the assumption NEXP = EXP does not suffice to conclude that every NEXP
search problem is solvable in deterministic time 2P°Y(™), The following theorem of Impagliazzo and
Tardos [IT89] gives some evidence to this effect.

Theorem 28 ([IT89]). There is an oracle relative to which NEXP = EXP, and yet there is a
NEXP search problem that cannot be solved deterministically in less than double exponential time.

Under the stronger assumption that NEXP = AM, we obtain the desired conclusion for NEXP
search problems.

Theorem 29. If NEXP = AM, then every NEXP search problem can be solved in deterministic
time 2PON(1),

The proof will follow from the next theorem.

Theorem 30. If NEXP = AM, then for every language L € NEXP there is a constant d such that
every sufficiently large n-bit string x € L has at least one witness y € {0,1}2'00'““) that can be
described by a SAT-oracle circuit of size at most n’.

Proof. The proof is by contradiction. It is easy to see by a simple padding argument that if, for
every polynomial-time decidable relation R(z,y) defined on {0,1}" x {0,1}?", there is a d € N such
that fr = fAR,SAT’nd, then the conclusion of the Theorem is true. So, let us suppose that there is
a polynomial-time decidable relation R(z,y) on {0,1}" x {0,1}2" such that, for every d € N, we
have fr # frsarnd-

Applying Lemma 17 and Theorem 13, we obtain that, for every e > 0, AM C io-[NTIME(2™)/n¢].
Together with our assumption that NEXP = EXP = AM, this contradicts Corollary 9. U

Proof of Theorem 29. By Theorem 30, witnesses for any language in NEXP can be found in deter-
ministic exponential time by enumerating all SAT-oracle circuits of some fixed polynomial size and
checking whether any of these circuits encodes a witness. O

We conclude this section by showing that, if NEXP C P/poly, then every language in NEXP has
membership witnesses of polynomial circuit complexity.
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Theorem 31. If NEXP C P/poly, then for every language L € EXP there is a constant d € N such
that every sufficiently large n-bit string x € L has at least one witness that can be described by a

Boolean circuit of size at most n?.

Proof. The assumption NEXP C P/poly implies by Theorem 23 that NEXP = MA. For the sake of
contradiction, suppose that the conclusion of our theorem does not hold. Then, similarly to the
proof of Theorem 30 above, we conclude that there is a polynomial-time decidable relation R(z,y)
on {0,1}" x {0,1}%" such that, for every d € N, we have fr # fR,g’nd.

Applying Lemma 17 and Theorem 12, we obtain that, for every e > 0, MA C io-[NTIME(2™)/n¢].
Combined with our assumption that NEXP = EXP = MA, this contradicts Corollary 9. O

5 Implications for Circuit Approximation and Natural Properties

In this section, we present two implications of our Theorem 23 for the problem of circuit approx-
imation and natural properties of Razborov and Rudich [RR97]. In Section 5.1, we show that
(for nondeterministic Turing machines with sublinear amount of advice) if the problem of circuit
approximation can be solved efficiently at all, then it can also be solved efficiently with only oracle
access to the Boolean circuit to be approximated. In Section 5.2, we show that the mere existence
of an NP-natural property useful against P/poly already implies the existence of a hard Boolean
function in NEXP.

5.1 Circuit Approximation

Recall that the Circuit Acceptance Probability Problem (CAPP) is the problem of computing the
fraction of inputs accepted by a given Boolean circuit. This problem is easily solvable in probabilistic
polynomial time, and, in a certain sense, is “complete” for promise-BPP (see, e.g., [KRC00, For01]).

We say that CAPP can be nontrivially approximated if, for every € > 0, there is a nondetermin-
istic 2" -time algorithm which, using advice of size n¢, approximates the acceptance probability of
any given Boolean circuit of size n, to within an additive error 1/6, for infinitely many input sizes
n. Here, we say that a nondeterministic algorithm M approximates a real-valued function g(x) to
within 1/6 for inputs of size n if:

1. for every z € {0,1}", there is an accepting computation of M on z, and
2. every accepting computation of M on z outputs a rational number g € [g(z)—1/6, g(z)+1/6].

We say that an algorithm M for approximating CAPP is “black-box” if M is given only oracle
access to an input Boolean function f (computable by a circuit of size n). That is, M is allowed
to query the value of f on any binary string a, but M is not allowed to view the actual syntactic
representation of any circuit computing f.

Finally, we say that a “black-box” algorithm M for approximating CAPP is non-adaptive if the
queries asked by M on a given input Boolean function f depend only on n, and all of these queries
are computed before obtaining the value of f on any one of them.

Theorem 32. The following assumptions are equivalent.
1. NEXP ¢ P/poly.

2. CAPP can be nontrivially approzimated.
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3. CAPP can be nontrivially approzimated by a “black-box” non-adaptive algorithm.

Proof Sketch. (3) = (2). Trivial.
(2) = (1). It is not difficult to see that if CAPP can be nontrivially approximated, then, for
every € > 0,

MA C io-[NTIME(2™)/n]. (5)

This implies that NEXP # MA, since otherwise we would contradict Corollary 9. Hence, by
Theorem 23, we conclude that NEXP ¢ P /poly.
(1) = (3). This follows immediately from Lemma 1 and Theorem 11. O

Remark 33. This raises the open question of whether an analogue of Theorem 32 can be proved
where all “nondeterministic” assumptions are replaced by the corresponding “deterministic” as-
sumptions. In particular, we want to know if the existence of a deterministic efficient algorithm
for approximating CAPP is equivalent to the existence of a deterministic efficient algorithm for the
same problem with the additional property of being “black-box” and non-adaptive.

Note that the existence of a deterministic polynomial-time algorithm that approximates the
acceptance probability of a given Boolean circuit to within an additive error 1/6 is equivalent to
the statement that promise-BPP C promise-P, which means the following: for every probabilistic
polynomial-time algorithm M, there is a deterministic polynomial-time algorithm A such that A
accepts every element in the set

{z € {0,1}" : Pr[M(z) accepts] > 2/3}
and A rejects every element in the set
{z € {0,1}" : Pr[M(z) accepts] < 1/3}.

The statement promise-BPP C promise-SUBEXP is interpreted similarly, with the deterministic
algorithm A running in subexponential time.
As an immediate consequence of Theorem 32, we obtain the following.

Corollary 34. promise-BPP C promise-SUBEXP = NEXP ¢ P /poly.

Obviously, if promise-BPP C promise-P, then BPP = P. However, the converse is not known to
hold. If the converse were to hold, then Theorem 32 would yield that BPP = P = NEXP ¢ P/poly,
and hence, derandomizing BPP would be as hard as proving circuit lower bounds for NEXP.

5.2 Natural Properties

Razborov and Rudich [RR97] argue that all known proofs of circuit lower bounds for nonmonotone
Boolean functions consist of two parts. First, one defines a certain “natural” property of Boolean
functions (or such a property is implicit in the proof) so that any family of Boolean functions
that satisfies this property must require “large” circuits. Then one shows that a particular explicit
family of Boolean functions satisfies this “natural” property.

We consider the scenario where one has made the first step (defined an appropriate property of
Boolean functions), but cannot (does not know how to) prove that some explicit Boolean function
satisfies this property. Does the existence of such a property alone yield any circuit lower bounds for
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explicit Boolean functions? We will argue that the answer is yes, if one considers a NEXP-complete
function explicit.?

Recall that a family F = {F, },>0 of nonempty subsets F,, of n-variable Boolean functions is
called P-natural if it satisfies the following conditions:

1. constructiveness the language T consisting of the truth tables of Boolean functions in F is
in P, and

2. largeness there is a ¢ € N such that, for every N = 2", we have |Ty| > 2V /N¢, where
Tn =T N{0,1}V.

By replacing P with NP in the constructiveness condition above, we obtain an NP-natural property.
Finally, a property F is called useful against P/poly if, for every family of Boolean functions
f ={fn}n>0, the following holds: if f, € F,, for infinitely many n, then f ¢ P/poly.

Theorem 35. If there exists an NP-natural property (even without the largeness condition) that is
useful against P/poly, then NEXP ¢ P/poly.

Proof Sketch. The existence of an NP-natural property allows us to guess and certify Boolean
functions of superpolynomial circuit complexity, nondeterministically in time polynomial in the
size of their truth tables; note that this does not require the largeness condition. By Theorem 12,
these hard Boolean functions can then be used to derandomize MA, yielding NEXP # MA. Now
the claim follows by Theorem 23. O

Remark 36. Note the following subtlety in our proof of Theorem 35. Although we conclude that
NEXP ¢ P/poly, we do not prove that any Boolean function in NEXP actually satisfies the given
natural property.

Remark 37. Here the interesting open problem is to try to prove a “deterministic” version of
Theorem 35. That is, does the existence of a P-natural property useful against P/poly imply that
EXP ¢ P/poly?

6 Downward Closures and Gap Theorems

The results showing that a collapse of higher complexity classes implies a collapse of lower complex-
ity classes are known as downward closure results. Very few such results are known. For example,
Impagliazzo and Naor [IN88]| prove that P = NP = DTIME(polylog(n)) = NTIME(polylog(n)) N
coNTIME(polylog(n)) = RTIME(polylog(n)); see also [BFNW93] and [HIS85]. We prove several
downward closure results for probabilistic complexity classes. Along the way, we also obtain “gap”
theorems for the complexity of BPE, ZPE, and MA.

Note: Fortnow [For01] gives much simpler proofs of the downward closures presented in this
section. However, our techniques also allow us to establish the gap theorems that do not seem to
follow from [For0O1].

6.1 Case of BPP

Here we establish the following

Theorem 38. EXP = BPP & EE = BPE.

SUsually, by an ezplicit Boolean function, one means a function in NP.
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Our proof will rely on the following result by Impagliazzo and Wigderson [IW98] on the deran-
domization of BPP under a uniform hardness assumption.

Theorem 39 ([IW98]). Suppose that EXP # BPP. Then, for every binary language L € BPP
and every € > 0, there is a deterministic 2™ -time algorithm A satisfying the following condition:
for every P-sampleable distribution family 1 = {pin}n>0, there are infinitely many n € N such that

Pr,[A(z) £ x1(2)] < 1/n.
This allows to prove the following.
Theorem 40. If EXP # BPP, then, for every e > 0, we have BPE C io-[DTIME(22™)/n].

Proof. 1f EXP # BPP, then, by Theorem 39, the assumption of Lemma 21 is satisfied, and hence,
our claim follows. O

Proof of Theorem 38. =. If EXP = BPP, then by padding, we conclude EE = BPE.
<. Assume BPE = EE, but BPP # EXP. By Theorem 40, BPE C io-[DTIME(22")/n]. But then
so is EE, contradicting Theorem 4. O

As a corollary to Theorem 40, we obtain the following.

Theorem 41 (Gap Theorem for BPE). Ezactly one of the following holds:
1. BPE =EE, or
2. for every e > 0, BPE C io-[DTIME(2%") /n].

Proof. First, by Theorem 4, statements (1) and (2) cannot both hold at the same time. Now, if
statement (1) does not hold, then, by padding, we get EXP # BPP, which implies statement (2)
via Theorem 40. O

6.2 Cases of ZPP and RP

In this section, we prove the following results.
Theorem 42. EXP = ZPP & EE = ZPE.
Theorem 43. EXP = RP < EE = RE.
The proof of Theorem 42 will rely on the following result implicit in [TW98].

Theorem 44 ([IW98]). Suppose that EXP # BPP. Then, for every binary language L € ZPP
and every € > 0, there is a deterministic 2" -time algorithm A satisfying the following conditions:

1. for every x € {0,1}*, we have A(z) € {xr(z),?}, where xr(z) islifz € L, and is 0 if z ¢ L,
(i.e., A(z) either outputs the correct answer, or says “don’t know”), and

2. for every P-sampleable distribution family 1 = {{in}n>0, there are infinitely many n € N such
that Pry,, [A(z) =7] < 1/n.

As a corollary, we can prove

Theorem 45. If EXP # BPP, then, for every € > 0, we have ZPE C io-DTIME(22™").
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Proof. 1f EXP # BPP, then the conclusion of Theorem 44 holds. Proceeding exactly as in the proof
of Lemma 21, we obtain that, for every language L. € BPP and every € > 0, there is a deterministic
22" _time algorithm A satisfying the following: there are infinitely many n € N such that, for some
0 <4 < 2", we have A(z0?" ") = yr(z) for every z € {0,1}".

At that point in the proof of Lemma 21, we took the binary encodings of such “good” i’s as
advice. However, in the present case we know that, by condition 1 of Theorem 44, our algorithm
A never gives a wrong answer, though it may output ?. Hence, we can simply try all possible i’s
and check if A outputs 0 or 1 on any of them. That is, our new algorithm B is the following:
On input z € {0,1}", accept z if there is a 0 < 4 < 2" such that A(z0%"~"*?) = 1, and reject
otherwise. It is easy to see that B correctly decides L infinitely often, and that the running time
of B is sub-double-exponential. O

Before we can prove our downward closure result, we need to show that the assumption of
Theorem 45 can be weakened to say EXP # ZPP. To this end, we prove the following.

Lemma 46. If, for some € > 0, ZPE Z io-DTIME(22™"), then BPP = ZPP.

Proof. The proof is very similar to that of Theorem 19. For a given language L € ZPE, there are
two polynomial-time decidable predicates R (z,y) and R_(z,y) such that, for some ¢ € N, we have
for every z € {0,1}" that

r€e L= Prye{o’l}zcn [R+(£E,y) = 1] 2 1/2 and Pry€{0,1}2cn [R_ (ZE,y) = 1] = 0,
€T ¢ L= Prye{o’l}zcn [R+(£E,y) = 1] =0 and Prye{o,l}%n [R_ ((L‘,y) = 1] 2 1/2

Without loss of generality, we may assume that ¢ = 1.

If, for all such pairs (Ri, R_) and every € > 0, there are infinitely many n where fr (z) =
fR,ggen (z) for every z € {0,1}", then it follows by a simple padding argument that ZPE C
io-DTIME(22™") for every € > 0. Hence, by our assumption, we have some pair (R;,R_) and
some € > 0 such that, for all sufficiently large n, fr, (z) # fR,gygen (z) for at least one z € {0,1}".

Proceeding as in the proof of Theorem 19, we obtain the existence of a poly(2")-time algorithm
that nondeterministically generates the truth tables of 2n-variable Boolean functions of circuit
complexity 2("). This algorithm outputs the string Y =y, ...yon, where y; € {0,1}?", such that,
for each xy,...,z9n € {0,1}", either Ry (z;,y;) =1 or R_(z;,y;) = 1. However, in our case, this
algorithm can be viewed as zero-error probabilistic because of the abundance of witnesses for x € L
and for z € L. Once we have such an algorithm, we conclude that BPP = ZPP, by applying
Theorem 14. O

Now we can strengthen Theorem 45.
Theorem 47. If EXP # ZPP, then, for every e > 0, we have ZPE C io-DTIME(227).

Proof. We prove the contrapositive. Suppose that, for some ¢ > 0, ZPE ¢ io-DTIME(2%"). Then,
by Theorem 45, we get EXP = BPP, and, by Lemma 46, we get BPP = ZPP. U

Proof of Theorem 42. =. This follows by a simple padding argument.
<. Suppose that EE = ZPE but EXP # ZPP. Then, by Theorem 47, we have EE = ZPE C
io-DTIME(22"), contrary to Theorem 4. O

The proof of Theorem 43 is now immediate.
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Proof of Theorem 48. =. This follows by a simple padding argument.
<. If EE = RE, then EE = ZPE, and hence, by Theorem 42, we get EXP = ZPP = RP. U

Theorem 47 yields the following.

Theorem 48 (Gap Theorem for ZPE). Ezactly one of the following holds:
1. ZPE =EE, or
2. for every € > 0, ZPE C io-DTIME(2%").

Proof. The proof is very similar to that of Theorem 41. O

6.3 Case of MA

For MA, we only know how to prove the following downward closure statement, which is weaker

than what we expect to be true. 6

Theorem 49. NEE = MA-E = NEXP N coNEXP = MA.

Proof. The proof is by contradiction. Suppose that NEE = MA-E, but that NEXP NcoNEXP # MA.
The latter assumption implies that

1. either NEXP N coNEXP # EXP,
2. or EXP # MA.

We will show that in each of these two cases one gets that MA C io-NSUBEXP.

Indeed, if NEXPNcoNEXP # EXP, then it follows by Theorem 20 that MA C AM C io-NSUBEXP.
On the other hand, if EXP # MA, then it follows by Theorem 22 that EXP ¢ P/poly. That is,
one can generate deterministically in polynomial time (without any advice!) the truth tables of
Boolean functions of superpolynomial circuit complexity (infinitely often), and hence, by Theo-
rem 12 (statement 2), we again obtain that MA C io-NSUBEXP.

Now it follows by a simple padding argument that if MA C io-NSUBEXP, then MA-E C
io-NSUBEE/n (where the advice of length n is used to point to the correct length, as in the proof
of Lemma 21).

Finally, we observe that our assumptions NEE = MA-E and MA-E C io-NSUBEE/n contradict
Corollary 10. O

We conclude this section with the following gap theorem for MA.
Theorem 50 (Gap Theorem for MA). Ezactly one of the following holds:

1. MA = NEXP, or

2. for every € > 0, MA C io-[NTIME(2™) /n¢].

Proof. If MA # NEXP, then, by Theorem 23, NEXP ¢ P/poly. Applying Lemma 1 and Theorem 12
(statement 2) implies that, for every € > 0, MA C io-[NTIME(2"")/n¢].

On the other hand, if both MA = NEXP and MA C io-[NTIME(2")/n], then we get a contradic-
tion by Corollary 9. U

6The statement that we actually wish to prove is the following: NEE = MA-E = NEXP = MA.
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7 Concluding Remarks and Open Problems

As we mentioned in the Introduction, our result that hard Boolean functions are required for de-
randomizing MA (Corollary 25) has the following consequence: If there is an efficient deterministic
algorithm for estimating the acceptance probability of a given Boolean circuit (and, hence, MA
can be derandomized), then NEXP requires superpolynomial circuit size. Thus, hard Boolean func-
tions are also required for derandomizing promise-RP, promise-BPP, and the class APP introduced
in [KRCO00].

We would like to point out which of our theorems relativize, and which do not. It follows from
the results in [BFT98] that the collapse of NEXP to MA when NEXP C P/poly (Corollary 25)
does not relativize; although, the only nonrelativizing ingredient in our proof is the the old result
from [BFL91] that EXP C P/poly = EXP = MA. The converse implication (Theorem 27) rela-
tivizes. The proof of NEXP C P/poly = NEXP = EXP (Theorem 24) uses the same nonrelativizing
result from [BFLI1], but we do not know whether the statement of Theorem 24 itself relativizes.
The proof of Theorem 29 uses only relativizing techniques, and hence, the statement relativizes.
Also, Fortnow [For(1] shows that all of our downward closure results from Section 6 have proofs
that relativize. On the other hand, the gap theorems for BPE, ZPE, and MA (Theorems 41, 48,
and 50) are proved using non-relativizing techniques. However, we do not know if these statements
themselves relativize.

As we mentioned in Section 5, one open problem is to decide if the assumption promise-BPP C
promise-P is equivalent to the existence of a deterministic polynomial-time algorithm for CAPP
which is “black-box” and non-adaptive. Another open problem is to decide if the existence of a
P-natural property useful against P/poly yields EXP ¢ P/poly.

We also would like to mention a few other open questions. Omne question is to show that
Theorem 24 does (or does not) relativize. Another question is whether Theorem 49 can be improved
to have the conclusion NEXP = MA, rather than NEXP N coNEXP = MA. Finally, it is interesting
to try to generalize our downward closures to higher time complexity classes; the techniques in
this paper (as well as those used by Lance Fortnow for the relativizing proofs) fail to show that
EEE = BPEE = EE = BPE, where EEE is the class of languages decidable in triple-exponential
time and BPEE is the double-exponential version of BPP.

Of course, the largest open problem on derandomization is to prove unconditional derandom-
ization results. Our results indicate that this is likely to require proving circuit lower bounds.
However, it is not clear whether sustained effort has been put into proving circuit lower bounds
for classes of very high complexity such as NEXP; such lower bounds might be quite a bit easier to
obtain than those for problems in NP or PSPACE.
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