
03684155: On the P vs. BPP problem. 30/10/2016 – Lecture 1

Local unique decoding

Amnon Ta-Shma and Dean Doron

1 Before we start

Error correcting codes. Relative distance and rate. Reed-Solomon, Reed-Muller, Hadamard.

1.1 Unique decoding of Reed-Solomon codes

This part closely follows Chapter 13 of the book by Guruswami, Rudra and Sudan [1]. We cite the
theorem we will prove.

Theorem 1. Given integer parameters q ≤ n < k, there exists an algorithm that given as input
a sequence of n distinct pairs {(αi, yi)}ni=1, αi, yi ∈ Fq, outputs the unique polynomial of degree at
most k − 1 satisfying | {i ∈ [n]} : p(αi) 6= yi| < n−k+1

2 . The algorithm runs in time poly(n, log q).

For the proof, look at [1, Chapter 13].

2 Local decoding

Suppose we use error correction to protect from errors. We start with a message x ∈ {0, 1}k and
we encode it to a codeword c = C(x) ∈ {0, 1}n using a [n, k, δ]2 error correcting code. We know
that we can recover from δn

2 errors in the sense that we can read a corrupted codeword (with at

most δn
2 errors) and decode it to recover the original message x, and we can do that in polynomial

time in n.

But, suppose we are only interested in the value of just one bit. I.e., we are not interested in
recovering the whole string x, but rather just one bit xi. Can we run in time polynomial in the
length of i? That is., can we recover xi (for any i) in time poly(log n)? Such a procedure is called
local decoding and we will define it soon. The general problem is still open today, but there are
non-trivial solutions, and they are even successfully deployed in clouds and massive data sets.

Definition 2. An [n, k]q code C is δ-locally-decodable by an algorithm R if there exists an algorithm
R that given i ∈ [k] and oracle access to w ∈ {0, 1}n such that if d(w,C(x)) ≤ δn then R(w, i) =
C(x)i.

The algorithm R can also be randomized, and then we require that for every input w with
d(w,C(x)) ≤ δn, for all i ∈ [k], R(w, i) = xi with high probability over the internal random
coins of R.

We usually look for R runs in time polynomial in log k + log q.

1

3 Locally decoding Reed-Muller codes

We now describe a variant of Reed-Muller codes: Fix a field Fq, a subset H ⊆ Fq and an integer
m. Let n = qm, k = |H|m and identify Hm with [k] and Fmq with [n].

To encode a string x ∈ Fkq put it first on Hm. Namely, say p(i) = xi for every i ∈ Hm = [k]. Then,
extend p to be an m-variate polynomial p : Fmq → Fq of degree at most |H| − 1 in each of the m
variables (why does such a p exist? why is it unique?).

A popular setting of the parameters is q = poly(|H|) in which case also n = qm = poly(|H|m) =
poly(k). also, we would like to work in the case where q � |H|·m. One possible choice of parameters
is |H| = log k, m = log|H| k = log k

log |H| = log k
log log k and q = poly(|H|) = poly(|H|,m) = poly(log k).

3.1 The very little noise case

We first handle the case when the error rate δ is very small, and we do it by a simple interpolation.
Roughly speaking, given a noisy word f : Fmq → Fq, we compute p(i) by passing a random line `
through i and reconstructing the function p ◦ `. We expect p ◦ ` and f ◦ ` to have a good agreement
so p ◦ ` can hopefully be recovered efficiently.

Theorem 3. For every q ≥ m(|H| − 1) + 2 and δ ≤ 1
3|H|m , the Reed-Muller code is δ-locally

decodable in time poly(m, |H|, log q).

Proof. We are given oracle access to f : Fmq → Fq such that there exists a degree deg = m · (|H|−1)

polynomial p : Fmq → Fq so that d(p, f) ≤ 1
3(d+1)n, and a point i ∈ [H]m, and we do the following:

1. Pick z ∈ Fmq at random and let ` be the line i+ tz for t ∈ Fq.

2. Let α1, . . . , αdeg+1 be distinct elements in F?q . For every j ∈ [deg + 1], let yj = (f ◦ `)(αj) =
f(i+ αjz). In other words we evaluate f ◦ ` : Fq → Fq on deg + 1 distinct points.

3. Interpolate to find a degree-d univariate polynomial h such that h(αj) = yj for every j ∈
[deg + 1].

4. Output h(0).

We prove:

Lemma 4. The above algorithm outputs p(i) with probability at least 2
3 .

Proof. The randomness comes from the choice of z. We define BADj to be the event that yj 6=
(p ◦ `)(αj). If none of these bad events occurred, we know the correct value of p ◦ ` at deg + 1
distinct points. As p ◦ ` is of degree at most deg, the polynomial h found in the interpolation step
is exactly the function p ◦ `, and indeed h(0) = (p ◦ `)(0) = p(i).

We now bound the probability of the bad events. By our definition, BADj happens if and only
if (f ◦ `)(αj) 6= (p ◦ `)(αj). Note that `(αj) is a random point in Fmq . I.e., even by fixing i, for
every t we have that i + tz is uniformly distributed in Fmq when z is uniformly distributed in Fmq .
Hence, Prz[BADj] ≤ δ for every j. By the union bound, the probability that at least one bad event
occurred is at most (deg + 1)δ ≤ 1

3 .

2

The running time of the algorithm is poly(m, deg, log q) = poly(m, |H|, log q). Note that we can
amplify the success probability by a simple plurality vote.

3.2 The constant noise case

We would like to improve the local error-correcting capability and to reach a constant δ (say,
δ = 1

16). The reason we could tolerate only a small error is because we required the evaluated
univariate polynomial to be absolutely error-free. Can we do better?

The idea is to allow errors. We will make sure that the number of errors in the restricted polynomial
is likely to be small, so we can apply the unique decoding of Reed-Solomon codes. To make the
sampling work better (so that the number of error is likely to be small) we will use a degree two
curve instead of a line (so we will have two-wise independence instead of one-wise and Chebyshev
instead of the union bound).

Theorem 5. For every q ≥ 8m(|H|−1)+1 and δ = 1
16 , the Reed-Muller code is δ-locally decodable

in time poly(m, |H|, log q).

Proof. We are given oracle access to f : Fmq → Fq such that there exists a degree deg = m · (|H|−1)

polynomial p : Fmq → Fq so that d(p, f) ≤ 1
16n, and a point i ∈ [H]m. We do the following:

1. Pick z1, z2 ∈ Fmq at random and let Γ : F2
q → Fmq be the degree two curve Γ(t) = i+ tz1 + t2z2

passing at i ∈ Fmq = [n].

2. Set ` = 4deg and let α1, . . . , α` be distinct elements in F?q . For every j ∈ [`], let yj = (f◦Γ)(αj).

3. Use Theorem 1 to find a degree-2deg univariate polynomial h : Fq → Fq such that h(αj) = yj
for at least `+2deg−1

2 of the points αj .

4. Output h(0).

As in the previous unique decoding algorithm, we define BADj to be the event that (f ◦ Γ)(αj) 6=
(p ◦ Γ)(αj). Observe that the points on Γ are pairwise independent, where the randomness comes
from the choices of z1 and z2. Namely, the random variables (Γ(α1), . . . ,Γ(α`)) ∈ (Fmq)` are uniform
and pairwise independent (why?). This also implies that the random variables BAD1, . . . , BAD`

are pairwise independent (why?).

Let X =
∑`

j=1BADj . We know that E[X] ≤ δ` and by Chebyshev’s inequality, and pairwise
independence, we have that

Pr[|X − E(X)| ≥ δ`] ≤ Var[X]

δ2`2
≤ `δ(1− δ)

δ2`2
≤ 1

δ2`
≤ 1

3
,

for a large enough ` (3
δ2

is a constant, and if ` is not large enough, then |H|,m are constants and

we can hide everything in the big O notation). If indeed X < 2δ` then X < `−2d+1
2 and the

Reed-Solomon unique decoding succeeds and h(0) is the correct output.

The running time of the algorithm is similar to the previous one, and as previously, the success
probability can be amplified.

3

References

[1] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding Theory. 2015. Avail-
able at http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book.

4

