
03684155: On the P vs. BPP problem. 18/12/16 – Lecture 10

Natural proofs

Amnon Ta-Shma and Dean Doron

1 Natural proofs

The ultimate goal we have is separating classes (or proving they are equal if they are). But our
success so far seems to be limited: We know a (quite) tight time hierarchy, a tight space hierarchy,
non-deterministic hierarchies, and some other (weaker) hierarchies. However, we are unable to even
prove that LOG 6= P#P or that BPP 6= NEXP. In this lecture we seek some justification to this
state of affairs.

First, there is this issue that often hierarchies are built using simulation (and negation) and then
almost by definition these hierarchies are not only true, but also true with respect to any oracle.
For example, diagonalization not only shows DTIME(n) 6= DTIME(n2) but also that for any oracle
O, DTIME(n)O 6= DTIME(n2)O. Such results are called relativized, i.e., they remain true relative
to any possible oracle. Since there are oracles O1 and O2 such that PO1 = NPO1 and PO2 6= NPO2

the P vs. NP question does not relativize and cannot be solved that way. In fact it seems the
borderline between what we know and what we don’t roughly corresponds to what relativizes and
what does not. However, there are exceptions.

This observation (that diagonalization usually relativize and does not suffice for many interesting
problems) is due to Baker, Gill and Solovay [1].

We now shift attention to the problem of proving lower bounds against non-uniform computation.
For example we may ponder why is it so hard to find an explicit function that is hard for polynomial-
size circuits (i.e., is not in P/poly). We discussed a lot in class the implications of EXP ⊆ P/poly
and NEXP ⊆ P/poly (a collapse to MA) and EXP 6⊆ P/poly (a partial derandomization of BPP). As
we know, it is still not known whether NEXP ⊆ P/poly or not. Why is it so difficult to prove such
lower-bounds?

In this lecture we define what natural proofs are, and show that if we believe in cryptography
natural proofs do not exist for many interesting separations we believe in. The results are from
Razborov and Rudich [3].

Say we have a non-uniform complexity class C, for example, you might think of SIZE(s(n)), P/poly
or AC0. For every n there are those function f ∈ Fn = {f : {0, 1}n → {0, 1}} that belong to the
class (e.g., have a small circuit, or a small constant-depth circuit) and those that do not. Let
Cn = C ∩ Fn. For example, if C = SIZE(s(n)) then f ∈ Cn if f is a function on n bits that can be
computed by s(n) size circuits.

Our goal is to find a function (in fact, a sequence of functions) that is not in C. Razborov and
Rudich call a proof natural if we do that by finding a property P such that:

1. Many functions (equivalently, a random function) have this property,

2. All functions in C do not have this property, and,

1

3. Given a truth table one can determine in polynomial time whether it satisfies the property
P or not.

It may be argued if indeed natural proofs really need to obey the above conditions, but it is true
that most lower bound (or at least many) are natural. Be it natural or not, we continue with the
following definitions:

Definition 1. Fn = {f : {0, 1}n → {0, 1}}. We sometimes view f ∈ Fn as a boolean function on
n variables, and sometimes as f ∈ {0, 1}2

n

.

Definition 2 (Non-uniform class of functions). A non-uniform class C is a collection {Cn ⊆ Fn}n,
where we think of Cn as the set of all functions on n variables that are within the class (e.g., have
a small circuit).

SIZE(s(n)) and depth-4 circuits of size n10 are examples for such non-uniform classes of functions.
P/poly or AC0 are slightly different, because the bound is asymptotic (and for every fixed n it is
possible we may take 2n size). However, they also fall into this frame of reasoning and for simplicity
we continue with this definition. In fact, instead of proving a bound for P/poly you can assume we
try to prove a lower bound on, say, for nlog log logn.

Definition 3 (Property). A property P is a collection {Pn ⊆ Fn}n, where we think of Pn as the
set of all functions on n variables that have the property (e.g., they cannot be approximated by a
low-degree polynomial).

Definition 4 (Constructive property). Let Γ be a complexity class (e.g., P or NC2). We say a
property P is Γ-constructive if there exists an algorithm in Γ that given the truth table of a function
in f ∈ Fn, given by its truth table of length 2n, determines whether f ∈ Pn.

For example if Γ = P then it is possible to determine in polynomial time (in 2n) membership in
Pn.

Definition 5 (Large property). We say a property P is large if for every n,

Pr
f∈Fn

[f ∈ Pn] = Pr
f∈{0,1}n′

[f ∈ Pn] ≥ 1

poly(n′)

where n′ = 2n. I.e., a non-negligible fraction of all functions belong to the property (the property is
not negligible).

We now define what a natural property is:

Definition 6 (Natural property). A property P is Γ-natural if it is Γ-constructive and large.

In essence, the constructivity property tries to capture the fact that we look for a uniform bound
on the non-uniform class, and the largeness property follows the intuition that we not only prove
our function is not in C but rather prove that many functions (often, almost all functions) are not
in C.
We also want our property to give examples that are not in C so we define:

Definition 7. A property P is useful against a non-uniform class C if for every n large enough,
Pn ∩ Cn = ∅. (Alternatively, another reasonable definition is that any sequence from P infinitely
often does not belong to C).

2

For example suppose we want to prove a uniform bound on SIZE(n5). Suppose L is a language in
SIZE(n5). Then, there are functions Ln ∈ Fn such that SIZE(Ln) ≤ n5. We let Cn be all functions
on n variables that have circuits of size n5, and in this notation Ln ∈ Cn for all n. A natural
lower-bound on SIZE(n5) would present a property P that is constructive and large and disjoint
from C.
We remark that even if we have a natural proof P against C we dot not necessarily have a uniform
function not in C (sampling a function in Fn, checking it is in Pn and evaluating it on the input
does not work (why?), finding the lexicographically first function not in C requires many non-
deterministic oracle class) and it is up to the lower-bound proof to show an explicit function with
property P.

Yet, Razborov and Rudich argue that even natural proofs are probably not strong enough to prove
lower bounds on non-uniform classes, i.e., if we believe in cryptography. So next we give some very
brief background about pseudo-random generators in cryptography (vs. the ones we have seen in
complexity).

2 Quoting from the [3] paper

Their article states:

[...] consider a commonly envisioned proof strategy for proving P 6= NP:

• Formulate some mathematical notion of “discrepancy” or “scatter” or “variation”
of the values of a Boolean function, or of an associated polytope or other structure.
[...]

• Show by an inductive argument that polynomial-sized circuits can only compute
functions of “low” discrepancy. [...]

• Then show that SAT, or some other function in NP, has “high” discrepancy.

Such a proof is likely to be natural. If cryptography is correct, such proofs cannot work
for P 6= NP.

3 Cryptographic PRGs

We recall the definition of a PRG we worked with:

Definition 8. A function G : {0, 1}` → {0, 1}m is a PRG against a non-uniform class C if for
every T ∈ C, ∣∣∣∣ Pr

x∈U`
[T (G(x)) = 1]− Pr

y∈Um
[T (y) = 1]

∣∣∣∣ ≤ ε.

We say G is efficient if G(x) runs in polynomial time in the output length m.

We stress that we measured efficiency as a function of the output length. This is because for the
application we have in mind we are going to go over all 2` seeds, so exponential time in the input
length is fine with us. A byproduct of this is that the generator G runs in time greater than the

3

adversary C it tries to fool (that in our applications has complexity C). Thus, in a sense, we do
not try to generate randomness out of thin air, but rather in hard work. As we saw, even this we
cannot do without assumptions, because it requires a uniform function hard against a non-uniform
class, and we currently do not have such a function.

However, cryptography assumes much more. The OWF assumption assumes (among other things)
that one can generate a function in polynomial time that is hard to invert even for much stronger
adversaries. Indeed the OWF assumption requires NP 6= P, and in fact if we allow non-uniform
adversaries as is normally the case, NP 6⊆ P/poly, as opposed to the EXP 6⊆ P/poly that we needed
for some partial derandomization. In fact the assumption NP 6⊆ P/poly does not suffice to prove
the existence of a OWF, but we will not get into it here.

Thus, cryptography assumes much more and gets much more. The thing is most people believe
that the assumptions underlying cryptography are correct. Thus, let us assume there are indeed
OWFs, and we will see that if this is the case then there are no P-natural proofs against P/poly.

Suppose there are OWFs. Then, a celebrated result shows there exist the following PRGs:

Definition 9. If OWFs exist then there exists a PRG {Gk} with Gk : {0, 1}k → {0, 1}2k, computable
in time poly(k), such that for all c, for all circuits C of polynomial size S ≤ kc, for every large
enough k,

|Pr[C(Gk(x)) = 1]− Pr[C(U2k) = 1]| ≤ 1/S.

For simplicity let us assume that the PRG runs in poly(k) time and is hard for circuits of size
klog log log k (which can be achieved by choosing the assumptions accordingly). The important thing
to notice is that the generator (that runs in poly(k) time) fools much stronger adversaries (that
run in super-poly(k) time).

Once we have such wonderful PRGs we can get much more:

Definition 10. A collection of functions H ⊆ Fn = {f : {0, 1}n → {0, 1}} is a pseudorandom
function (PRF) if for every circuit C (limited, say, by size, as above) and every m = poly(n)
indices i1, . . . , im ∈ {0, 1}n,∣∣∣∣ Pr

h∈H
[C(h(i1), . . . , h(im)) = 1]− Pr[C(Um) = 1]

∣∣∣∣ ≤ ε.

I.e., we use the seed to sample a function (before we had 2k possible values for the seed and we will
keep that). The seed determines a function with 2n values (before we had only 2k values). The
construction has the property similar to poly(n)-wise independence (but instead of true randomness
we get computation indistinguishability from uniform), i.e., for any poly(n) values we choose to
look at the values look to a limited adversary as uniform.

The transition from a PRG to a PRF (known as GGM, due to Goldreich, Goldwasser and Micali
[2]) is simple and elegant.

Let G0, G1 be the first and last k bits of the output of G. For a string y ∈ {0, 1}n, define
Gy : {0, 1}k → {0, 1}k by

Gy(x) = (Gyn ◦Gyn−1 ◦ . . . ◦Gy1)(x).

For x ∈ {0, 1}k, let hx : {0, 1}n → {0, 1} be the function that on input y ∈ {0, 1}n, outputs the first
bit of Gy(x).

4

Theorem 11. If G is a PRG then
{
hx | x ∈ {0, 1}k

}
n

is indeed a PRF.

Proof. Think of the computation of Gy(x) as a binary tree, where the root is x and every vertex
v has a left child G0(v) and a right child G1(v). This is a complete binary tree of height n, where
the computation is done via traversing along the y-path.

Assume towards contradiction that there exists a circuit C making m = poly(n) distinct queries
to hx and distinguishes it from Um with probability at least ε. We will show a circuit C ′ that
distinguishes between G(Uk) and U2k with probability at least ε′ for some ε′ polynomial in ε.

We will partially construct the above binary tree in correspondence with the queries made by C
and view the procedure as the way C obtains hx(i1), . . . , hx(im) for some fixed i1, . . . , im. Initially,
the tree contains only the root x. Whenever a query hx(ij) is made, let v be the lowest point in
the ij-path from the root that is already computed. We then compute all the values along the
path from v to the leaf corresponding to ij . Whenever a labeled vertex is being computed, both its
children are re-labeled and the label of the vertex itself is erased. This procedure makes at most
M = m · n invocations of G.

For i = 0, 1, . . . ,M define H i in the following way: H i is the above procedure for obtaining
hx(i1), . . . , hx(im), except that in the first i times when G is supposed to be invoked in order to
label the two children of some node v labeled z, we do not do this but instead perform a “uniform”
labeling: G(z) = (z0, z1) for random z0, z1 ∈ {0, 1}k, instead of G(z) = (G0(z), G1(z)). Clearly,
H0 is the original invocation while HM gives the uniform distribution. For some i ∈ [M], we can
therefore distinguish C(H i) from C(H i−1) with probability at least ε/M .

Before we continue, make the following modification to the uniform labelings of H i: On a vertex
v, we erase its label and mark both its children as “to be chosen at random” and will choose each
of these labels at random only when it will be needed in a future time. Note that typically the
label for one of the children will be needed in the next step, but the label for the other child may
only be required to answer a future query or perhaps never. Even the root x is not chosen initially
but rather is initiated with the “to be chosen at random” label. Note that for the first i uniform
labelings whenever the value for an internal vertex is used then it is immediately erased, and so in
the first i steps all the internal vertices are either untouched or marked “to be chosen at random”.

We now describe a circuit C ′ that distinguishes between G(Uk) and U2k. On input w ∈ {0, 1}2k,
run the above procedure until the i-th uniform invocation. In this invocation we are supposed to
take an internal vertex v which is marked “to be chosen at random”, and choose a random value
z for it. In H i−1 we choose (z0, z1) = G(z) and use it to label vs children, then erase z. In H i we
choose z0 and z1 at random. C ′ will simply let (z0, z1) = w and use this as the labeling.

It is clear that if w ∼ G(Uk) then we get H i−1 and if w ∼ U2k we get H i. Therefore, the success
of C ′ is the success of distinguishing between C(H i−1) and C(H i), which is ε′. The size of C ′ is
polynomial in the size of C, so we are done.

We notice that we are in a familiar situation. Once we sample h ∈ H it defines a function with
2n outputs, or, equivalently a truth table with 2n entries. However, the construction is so that
computing the value of h on a specific entry y ∈ {0, 1}n can be done in poly(k, n) time, Thus, the
truth table defines an easy function!

5

4 Natural proofs cannot prove strong lower-bounds on circuit size

Theorem 12. Let H ⊆ Fn be the GGM construction built upon a PRG G that fools circuits of size
s with ε error. Then, if there is a P-natural proof against P/poly then there exists a distinguisher
running in time poly(2n) that ε

2n -distinguishes G from uniform.

Proof. Suppose P is a P-natural proof against P/poly. As we noticed before, the GGM construction
constructs a set H ⊆ Fn of functions h, all of them belong to P/poly. Hence, the intersection
between H and P is empty (at least for every large enough n).

Next, we define a distinguisher: given f ∈ Fn it checks whether f ∈ Pn. This distinguisher accepts
the uniform distribution with a non-negligible probability δ (because of the largeness property) and
rejects all elements h ∈ H (because the do not belong to P). Thus, it distinguishes between the
uniform distribution over Fn and the flat distribution over H. The distinguisher runs in 2O(n) time.

This distinguisher by itself is not a contradiction for the PRF property of H, because we look at
all the 2n entries in the table. Yet, a similar hybrid argument can translate it to a distinguisher for
a pair with about the same running time, and δ

2n advantage, which concludes the proof.

If we do the parameters right, i.e., we assume a OWF with 2n
δ

hardness, we can get a PRG
G : {0, 1}k → {0, 1}2k that is very hard against circuits of size almost exponential in k (say, 2−k

α

hard against circuits of size 2k
α

for some α > 0). Then, we can choose n to be kβ for some β < α.
Thus, if there are such natural proofs against P/poly, G is not as hard as it should be.

In short: If there are PRGs, then GGM gives functions in P/poly that cannot be naturally separated
from uniform. If G and the PRF run in lower classes we should not get natural proofs against those
classes. Currently, under widely believed assumptions there are PRFs in TC0 (constant depth,
polynomial size, and, or, threshold gates and unbounded fan-in) so under these beliefs there are no
natural lower bounds against TC0.

References

[1] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P=?NP question. SIAM
Journal on computing, 4(4):431–442, 1975.

[2] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM (JACM), 33(4):792–807, 1986.

[3] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

[4] R Ryan Williams. Natural proofs versus derandomization. SIAM Journal on Computing,
45(2):497–529, 2016.

6

