
03684155: On the P vs. BPP problem. 30/12/2016 – Lecture 11

Promise problems

Amnon Ta-Shma and Dean Doron

1 Definitions and examples

In a promise problem, we are interested in solving a problem only on a subset of the inputs, which
is a very natural phenomenon (“given a connected graph, determine whether or not...”). Formally:

Definition 1. A promise problem Π is a pair (ΠY ,ΠN) such that ΠY ,ΠN ⊆ {0, 1}? and ΠY ∩ΠN =
∅. The set ΠY ∪ΠN is called the promise.

Given a complexity class C, we denote the class Promise-C to denote the set of promise problems
decidable via the same resources as problems in C. For example, Π = (ΠY ,ΠN) ∈ Promise-BPP if
there exists a probabilistic polynomial-time algorithm M such that:

• For every x ∈ ΠY it holds that Pry[M(x, y) = 1] ≥ 2/3.

• For every x ∈ ΠN it holds that Pry[M(x, y) = 0] ≥ 2/3.

Note that we do not impose any requirements on the output of M on x-s outside the promise (but
do, however, require M to run in polynomial-time).

Reductions also extend naturally to promise problems.

Definition 2. The promise problem Π = (ΠY ,ΠN) is (Karp) reducible to the probmise problem
Π′ = (Π′Y ,Π

′
N) if there exists a polynomial-time computable function f such that:

• For every x ∈ ΠY it holds that f(x) ∈ Π′Y .

• For every x ∈ ΠN it holds that f(x) ∈ Π′N .

Definition 3. The promise problem Π = (ΠY ,ΠN) is Cook-reducible to the probmise problem
Π′ = (Π′Y ,Π

′
N) if there exists a polynomial-time oracle TM M such that:

• For every x ∈ ΠY it holds that MΠ′
(x) = 1.

• For every x ∈ ΠN it holds that MΠ′
(x) = 0.

Although it is unknown whether or not BPP has a complete problem, it follows immediately that
the above problem is complete for Promise-BPP (under Karp reductions): The Yes instances are
Boolean circuits that evaluate to 1 on at least 2/3 fraction of their inputs whereas the No instances
are Boolean circuits that evaluate to 0 on at least 2/3 fraction of their inputs.

A more notorious example that differentiates promise problems from their decision problems coun-
terparts is the existence of a Promise-NP-hard problem (under Cook reductions) in Promise-NP ∩
Promise-coNP. An analogous result in the non-promise world would imply NP = coNP. The promise
problem PSAT is the following:

1

• Yes instances: (ϕ1, ϕ2) such that ϕ1 ∈ SAT and ϕ2 /∈ SAT.

• No instance: (ϕ1, ϕ2) such that ϕ1 /∈ SAT and ϕ2 ∈ SAT.

The following fact is easy:

Claim 4. PSAT ∈ Promise-NP ∩ Promise-coNP.

Furthermore:

Claim 5. Promise-NP is Cook-reducible to PSAT.

Proof. The reduction from SAT to PSAT is the following: On input ϕ with n variables and oracle
access to PSAT, the TM M proceeds as follows:

1. For every i ∈ [n],

(a) Let ϕi,b be the formula obtained from ϕ by setting xi to b.

(b) Invoke Π′ on (ϕi,1, ϕi,0). If the answer is Yes then set xi = 1 in ϕ and otherwise set
xi = 0 in ϕ.

2. Accept iff ϕ = 1.

If ϕ is not satisfiable then of course we will always reject. Note that at any stage, if ϕ is satisfiable
and the query (ϕi,0, ϕi,1) is answered with b then ϕ(xi = b) is satisfiable. Thus, if ϕ is satisfiable
we will end up with 1 and accept.

How did we “gain” this power? The promiscuous way in which we applied the oracle calls does
not maintain the standard meaning of the reduction – we made queries that violate the promise,
but still we have shown that the reduction remains valid regardless of the answers given to these
violating queries. However, these queries fail to preserve the structural consequences we would
expect.

One may eliminate the problems arising from such queries by requiring that the reduction does not
make them (we will see this in the exercise). Also, Karp reductions are such an example.

2 Another look at BPP ⊆ Σ2

2.1 BPP ⊆ Σ2

We show a different way of proving Sipser’s theorem BPP ⊆ Σ2, via a randomness-efficient error-
reduction, due to Goldreich and Zuckerman [1]. Recall that since BPP ⊆ Σ2, P = NP implies
P = BPP.

The obvious way to amplify the success probability is by repeated independent sampling. This way,
we can transform a constant-error BPP machine that uses m coins to a one with 2−t error using
O(mt) coins. Using extractors, we know how to do it using O(t) coins. What we should note is
that the number of coins used is essentially the logarithm of the error bound. Specifically:

2

Theorem 6 ([2]). For every L ∈ BPP there exists a probabilistic TM M and a polynomial p such
that

Pr
y∈{0,1}p(|x|)

[M(x, y) 6= L(x)] < 2−2p(|x|)/3.

The interested reader may refer to last year’s course for the (non-tight) proof: http://www.cs.

tau.ac.il/~amnon/Classes/2016-PRG/Lecture2.pdf.

Theorem 7. BPP ⊆ Σ2.

Proof. Let L ∈ BPP, so there exists a polynomial-time TM M and a polynomial p such that if
x ∈ L then Pry[M(x, y) = 1] > 1 − 2−2p(|x|)/3 and if x /∈ L then Pry[M(x, y) = 1] < 2−2p(|x|)/3,

where y ∈ {0, 1}p(|x|). On input x, let m = p(|x|).
We know that if x ∈ L then there are at most 2m/3 possible y-s for which M(x, y) = 0. Thus, there

are at most 2m/3 prefixes y′ ∈ {0, 1}m/2 for which some y′′ exists so that M(x, y′y′′) = 0. If x /∈ L

then there are at most 2m/3 possible y-s for which M(x, y) = 1, so for each y′ ∈ {0, 1}m/2, it holds
that

Pr
y′′∈{0,1}m/2

[M(x, y′y′′) = 1] ≤ 2m/3

2m/2
= o(1).

Consequently, if x ∈ L then
∃y′ ∀y′′ M(x, y′y′′) = 1,

and if x /∈ L then
∀y′ ∃y′′ M(x, y′y′′) = 0.

Thus, L ∈ Σ2. In fact, it shows an even stronger claim: we can replace the ∃ quantifier with a for
almost all quantifier.

What we did is essentially divided the set of 2m possible coin tosses into 2m/2 subsets of size 2m/2.
To handle the x ∈ L case, we used the fact that the number of bad coin tosses is smaller than the
number of subsets. To handle the x /∈ L case, we used the fact that the number of bad coin tosses
is smaller than the size of each subset. Both facts are non-trivial, and are a consequence of the
efficient error-reduction scheme. The above prove also holds for Promise-BPP.

2.2 P, Promise-RP and Promise-BPP

As far as we know, it may be the case that RP = P, yet BPP 6= P. In the promise world, this is not
the case.

Theorem 8. If Promise-RP = P then Promise-BPP = P.

Here, the more standard BPP ⊆ Σ2 proof will be useful. A closer look at the proof reveals that is
also shows:

Theorem 9. Promise-BPP ⊆ Promise-RPPromise-RP.

From this, Theorem 8 easily follows: If Promise-RP = P then Promise-BPP ⊆ PP = P.

3

Proof. (of Theorem 8). We prove the stronger claim, that BPP ⊆ RPPromise-RP, even with one oracle
call. Let L ∈ BPP, equipped with a TM M that on input of length n errs with probability at most
2−n and uses at most p(n) random coins for some fixed polynomial p.

Define:

B =
{

(x, y1, . . . , yp(|x|)) | ∃w, M(x,w ⊕ y1) = 0 ∧ . . . ∧M(x,w ⊕ yp(|x|)) = 0
}
.

Consider an RPB algorithm, that on input x ∈ Bn, chooses y1, . . . , yp(n) independently at random
and accepts iff (x, y1, . . . , yp(n)) /∈ B.

If x ∈ L then for a fixed w and for every i, Pr[M(x,w ⊕ yi) = 0] ≤ 2−n. As the choices are
independent, Pr[∀i M(x,w ⊕ yi) = 0] ≤ 2−n·p(n). By the union bound over all w-s, we have that
Pr[x ∈ B] ≤ 2−n.

Suppose now that x /∈ L. Fix some y1, . . . , yp(n) and i. If we choose w at random, then again,
Pr[M(x,w⊕yi) = 1] ≤ 2−n. By the union bound, Pr[∃i M(x,w⊕yi) = 1] ≤ p(n)·2−n ≤ 1/2. Thus,
for every y1, . . . , yp(n), there exists a good w and (x, y1, . . . , yp(n)) ∈ B. Thus, indeed, L ∈ RPB.

The next step is to show that L ∈ RPPromise-RP. Let C ⊆ B and we only know that for a tuple
(x, y1, . . . , yp(n)):

• If more than half of the w-s satisfy M(x,w ⊕ y1) = 0 ∧ . . . ∧ M(x,w ⊕ yp(|x|)) = 0 then
(x, y1, . . . , yp(n)) ∈ C.

• If there is not w-s satisfying M(x,w⊕y1) = 0∧. . .∧M(x,w⊕yp(|x|)) = 0 then (x, y1, . . . , yp(n)) /∈
C.

The same proof that L ∈ RPB also shows that L ∈ RPC (verify this). What did we gain? B ∈ NP,
however clearly, C ∈ Promise-RP and we are done.

3 EXP 6⊆ P/poly revisited

We know that if EXP 6⊆ P/poly then we have a partial derandomization of BPP, namely BPP ⊆
io-SUBEXP. The same derandomization also holds for PrBPP. This result readily holds for
Promise-BPP, that is Promise-BPP ⊆ io-SUBEXP. However, it is not known whether the existence
of hard Boolean functions in EXP is actually necessary for partial derandomization of BPP.

On the other hand, any partial (even nondeterministic) derandomization of Promise-BPP yields a
circuit lower bound for NEXP:

Theorem 10. If Promise-BPP ⊆ Promise-SUBEXP then NEXP 6⊆ P/poly.

We will give this as an exercise.

Thus, unconditional results in derandomization require either making a distinction between BPP
and Promise-BPP, or proving circuit lower bounds for NEXP. Indeed, we know that NEXP ⊆ P/poly
implies MA = NEXP, and hence no derandomization of MA is possible unless there are hard
functions in NEXP. Since derandomizing Promise-BPP also allows to derandomize MA, we conclude
that no full derandomization is possible without assuming (or proving) lower bounds for NEXP.

4

References

[1] Oded Goldreich and David Zuckerman. Another proof that BPP⊆PH (and more). In Electronic
Colloquium on Computational Complexity, 1997.

[2] David Zuckerman. Simulating BPP using a general weak random source. Algorithmica, 16(4-
5):367–391, 1996.

5

