
03684155: On the P vs. BPP problem. 30/12/2016 – Lecture 12

Time Hierarchy Theorems

Amnon Ta-Shma and Dean Doron

1 Diagonalization arguments

Throughout this lecture, for a TM M , we denote M t to be the machine M , when restricted to run
for at most t steps by some time-out mechanism. M t rejects if M did not halt within t steps.

1.1 Deterministic time hierarchy

The most basic approach to show hierarchies uses simulation and diagonalization. Say we want to
show a hierarchy for DTIME, like we do in the complexity course. Consider an effective enumeration
of DTIME machines, assigning to each input x a machine Mx in the enumeration. We define L
using a machine M which given an input x simulates M t

x on x and does the opposite (it can do the
opposite sine DTIME is closed under complement).

L is not in DTIME(t(n)), since for any DTIME machine M ′ running in time t(n), M(M ′) 6= M ′(M ′).
Thus, we have showed the required lower bound on the complexity of L. The upper bound depends
on the complexity of simulations of machines in the enumeration. If DTIME(t(n)) machines can
be simulated in time T , we obtain the required upper bound on the complexity on L, and L ∈
DTIME(T (n)) \ DTIME(t(n)). Specifically, we know that:

Theorem 1. For any time-constructible t and T such that t(n) log t(n) = o(T (n)), DTIME(t) (
DTIME(T).

This simulation and diagonalization approach works for any complexity class that both has an
effective enumeration of machines defining languages in the class (this excludes BPTIME) and is
closed under complement. Thus, it works also for deterministic and nondeterministic space, and
for PP.

Throughout this lecture, the notion of time-constructibility will be important to us. Formally:

Definition 2. Let f : N→ N be a function. We say that f is time-constructible if n ≤ f(n) ≤ 2n

and there is a deterministic TM M such that on input n, M runs at most f(n) steps and outputs
f(n).

1.2 Indirect diagonalization – nondeterministic time hierarchy

Obviously, the above approach fails for NTIME, as we cannot simply “do the opposite”. We can
avoid this problem by an “indirect diagonalization” – assume that a hierarchy theorem does not
hold and then find a way to amplify this assumption until deriving a contradiction to some other
hierarchy theorem proven by direct diagonalization. Simply stated, we can negate if we have
exponentially more time. But then we won’t get a fine hierarchy at all. Thus, we only try to
disagree at least once in an exponentially-large interval.

1

Theorem 3. For any time-constructible functions t and T such that t(n+1) = o(T (n)), NTIME(t) (
NTIME(T).

We prove this theorem for the weaker assumption of t(n+ 1) log(t(n+ 1)) = o(T (n)).

Proof. For the k-th nondeterministic TM Mk, associate an interval Ik = (`k, uk] ⊆ N, and they
should all be contiguous. Also, the upper bound should be exponentially larger than the lower
bound, so take uk = 2`

2
k . Now, define a nondeterministic TM D, that on input 1n:

1. Find k for which n ∈ Ik.

2. (a) If n < uk, simulate M
T (n)
k (1n+1) (nondeterministically).

(b) If n = uk, deterministically decide if Mk accepts 1`k+1 by trying all computation paths,
for T (`k + 1) steps, and do the opposite.

Note that in step 2(a) we do note negate, but simulate on a larger input, and in step 2(b) we
negate, but on a much smaller input.

By construction, D runs in NTIME(T (n)) as step 2(b) takes 2T (`k+1) ≤ T (n) time. Assume towards
contradiction that there exists a nondeterministic TM M running in nondeterministic time cn such
that L(D) = L(M). We may assume that there are infinitely many k-s for which L(M) = L(Mk),
so in particular we can think of k = k0 as being arbitrarily large. Specifically, on inputs of length
n ≥ `k0 , Mk0 can be simulated in less than T (n) time.

We thereby have, on input 1n where n ∈ Ik0 :

1. If n < uk then D(1n) = Mk0(1n+1).

2. If n = uk then D(1uk) 6= Mk0(1uk+1).

By our assumption, Mk0 and D agree on all inputs in the interval Ik0 . Together with item (1), this
implies that D(1uk0) = Mk0(1`k+1), in contradiction to item (2).

2 Hierarchies for probabilistic classes with advice

For classes like BPTIME or RTIME we cannot effectively enumerate the corresponding Turing ma-
chines: A probabilistic TM that decides a BPTIME language must possess a very special property.
It must hold that for any x, either Pr[M(x) = 1] > 2/3 or Pr[M(x) = 1] < 1/3. It is undecidable
to test whether a machine M satisfies this property and it is also unknown whether one can test if
M satisfies this property for a specific x ∈ {0, 1}n using less than 2n steps.

Thus, other than giving trivial results (one of which we will see in the exercise), the above techniques
do not work.

The work of Barak [2] overcomes this obstacle by establishing hierarchies with advice, as opposed
to hierarchies for completely uniform classes:

Theorem 4. For every constant d ≥ 1 there exists a constant γ such that

BPTIME(nd)/γ log n (BPTIME(nd+1)/γ log n.

2

The above theorem will follow easily from the following one, which will constitute our main result
for this lecture.

Theorem 5. For every constant d ≥ 1, BPP/ log log n 6⊆ BPTIME(nd)/ log n.

Proof. (of Theorem 4). For simplicity, consider d = 1, and suppose towards contradiction that for
every constant γ,

BPTIME(n)/γ log n = BPTIME(n2)/γ log n.

By padding, this implies that

BPTIME(t(n))/γ log t(n) = BPTIME(t(n)2)/γ log t(n)

for every time-constructible t(n). In particular, choose t(n) = n2 and γ = 1
2 , so

BPTIME(n2)/ log n = BPTIME(n4)/ log n.

However, BPTIME(n2)/ log n = BPTIME(n)/ log n, so BPTIME(n)/ log n = BPTIME(n4)/ log n.
Continuing the same way, we have that for every constant c,

BPTIME(nc)/ log n = BPTIME(n)/ log n.

But then,
BPTIME(nc)/ log log n ⊆ BPTIME(nc)/ log n = BPTIME(n)/ log n,

which implies BPP/ log logn ⊆ BPTIME(n)/ log n, contradicting Theorem 5.

2.1 Some preliminaries

We will need some “scaling-up” lemmas. The proofs are by padding, and we give them as an
exercise.

Lemma 6. For every constant d ≥ 1, if BPTIME(nd) = BPTIME(nd+1) then BPTIME(nd) = BPP.

Also:

Lemma 7. For every constant d ≥ 1, if BPTIME(nd) = BPP then BPTIME(t(n)) = BPTIME(t(n)c)
for every constant c ≥ 1 and time-constructible function t that satisfies t(n) ≥ nd.

Combining the two lemmas, we obtain:

Corollary 8. For every constant d ≥ 1, if there exists a time-constructible function t and a
constant c > 1 such that t(n) ≥ nd and BPTIME(t(n)) (BPTIME(t(n)c) then BPTIME(nd) (
BPTIME(nd+1).

2.2 Attempt I – without the advice

Suppose we want to prove Theorem 5 for d = 1 without the advice so assume towards contradiction
that BPTIME(n) = BPP. We follow two conceptual ideas:

3

2.2.1 Optimal algorithms

An optimal algorithm for a language L is an algorithm that is at worst polynomially slower than any
algorithm for L. We know by Lemma 7 that BPTIME(t) = BPTIME(tc) for every constant c and
time-constructible t. This means that if we have a language L for which there exists a BPTIME(T)
algorithm, it will also have a BPTIME(T 1/c) algorithm. Wee see that no algorithm in BPP has an
optimal algorithm.

To derive a contradiction, we need to come up with an optimal algorithm! That is, a BPTIME(T)
TM A that solves some L and any other TM A′ that solves L must take at least T 1/c steps for
some constant c.

How can we come up with such an optimal algorithm? The idea goes as follows: A will enumerate
all TMs of size, say, log n, and will try to use each machine to solve L. Then, for all but finitely-
many inputs, A′ will be one of the machines enumerated by A. Therefore, A is able to use A′ to
solve L and so A will be at most polynomially slower than A′. There is an obvious obstacle – how
do we know which TM solves L?

2.2.2 Instance Checkers

As we are free to choose L as we wish, we choose it to be one that is equipped with an instance
checker.

Definition 9. An instance checker for a language L is a probabilistic polynomial-time oracle TM
C with output in {0, 1, quit} such that for every x and every oracle O,

Pr[CO(x) /∈ {L(x), quit}] < 2−Ω(|x|)

and Pr[CL(x) = L(x)] = 1. All the queries C makes should be of linear length in |x|.

Given an input x and an instance checker C for L, our algorithm A will do the following on input
x ∈ {0, 1}n:

• For m = 1, 2, . . ., for each probabilistic TM M of size log n:

– Compute CMm
(x).

– If a 6= quit, output a.

By our definition, we see that if there exists a BPTIME(t) algorithm A′ for L, then with high
probability, our algorithm A is only polynomially-slower, and outputs L(x).

As a consequence of the EXP ⊆ MIP proof, every EXP-complete language has an instance checker
[1], so we take L to be such a language. Now, define the function T such that T (n) is the minimal
number k such that for every x ∈ {0, 1}n, A(x) halts with probability at least 2

3 . We assume T is
super-polynomial, as otherwise BPP = EXP – for which we have hierarchy theorems.

It may seem like we are done – L can be solved in BPTIME(T), but not in BPTIME(T 1/c) for some
constant c, since otherwise A would have halted sooner. However, there are still two problems:

1. A BPTIME(T) machine must halt with probability 1 on every input, and not only with high
probability.

4

2. The function T is not necessarily time-constructible, so even if we do show that BPTIME(T) 6⊆
BPTIME(T 1/c) we will not be able to prove BPTIME(n) 6= BPP.

Note that the first problem is not significant since had T been time-constructible, we could have
simply halt within T (n) steps.

This is where non-uniformity enters the picture.

2.3 Attempt II – with advice

Every function n ≤ T (n) ≤ 2n can be approximated by a time-constructible function T ′ using only

log logn bits of advice – it is simply the value log log T (n). By defining T ′(n) = 22dlog log T (n)e
, we

have that T (n) ≤ T ′(n) ≤ T (n)2.

This approach does not “put the advice in both sides”. That is, it only proves that there exists
an L ∈ BPTIME(T)/ log log n such that L /∈ BPTIME(T 1/c), which is not what we want (and
also trivial). However, re-visiting our algorithm A, we see that it works even against non-uniform
algorithms with log n advice bits. This will give us

BPTIME(T)/ log log n 6⊆ BPTIME(T 1/c)/ log n

and a careful padding will lead us to our goal of BPP/ log log n not in BPTIME(nd)/ log n. We now
make things more concrete.

We assume EXP 6⊆ io-BPP, as otherwise a standard argument, not within our new technique, will
lead to proving Theorem 5. Let L be an EXP-complete language decidable in DTIME(2n) equipped
with an instance checker C for which every query length is at most c|x|.
Let I =

{
2k | k ∈ N

}
and assume w.l.o.g. that L only contains strings whose length is in I. By our

assumption, there is no probabilistic polynomial-time TM that solves L on infinitely many n ∈ I.

Define t̂ : {0, 1}? → N so that t̂(x) is the minimum number m such that there exists a probabilistic
TM of size logm such that Pr[CMm

(x) 6= quit] > 2
3 . Define t : I → N as follows:

t(n) =
1

n
max

x∈{0,1}n/c
t̂(x).

By the way we defined t, we wanted that both L /∈ BPTIME(t) and our algorithm A decides L in
poly(n) · poly(t(c · nc)) = poly(t(n)) time.

Indeed, if we take A and change it so that we will go over all TMs of size logm instead of log n
then on input x ∈ {0, 1}n with high probability it will output L(x) after at most poly(t(cn)) steps.
That is, there exists a constant e such that L ∈ BPTIME(T ′) for every time-constructible function
T ′ satisfying T ′(n) ≥ t(cn)e.

Finally, we have:

Claim 10. L /∈ BPTIME(t)/ log t. Furthermore, this holds for almost all input lengths in I.

Proof. Assume towards contradiction that L ∈ BPTIME(t)/ log t. Then, for some n ∈ I, there exists
a logm-sized TM such that Pr[Mm(x) = L(x)] > 2

3 for every x ∈ {0, 1}n, where m ≤ t(n). Take

M̃ to be the amplified success probability variant of M , so that Pr[M̃ m̃(x) = L(x)] > 1 − 2Ω(n),

where m̃ = n
2m. By definition of t, there exists x ∈ {0, 1}n/c such that t̃(x) > m̃ so for every

5

log m̃-sized TM, and in particular for M̃ , the probability that CM̃m̃
(x) 6= quit is at most 2

3 . This
is a contradiction, since Pr[CL(x) 6= quit] = 1, and by the union bound, the probability that the
checker will ask a query x′ and get an answer from M̃ m̃ that is different from L(x′) is negligible.

From the above claim, proving Theorem 5 is via a padding argument and we will skip it.

Goldreich, Sudan and Trevisan [3] abstracted out this idea to show that any separation of a time-
bounded class with less than logarithmic advice against a class using slightly more advice can be
translated to a separation of the first class with 1 bit of advice against the second class with slightly
more advice. A corollary of their work gives the state-of-the-art separation of BPP:

Theorem 11. For any reals 1 ≤ a < b, BPTIME(na)/1 (BPTIME(nb)/1.

3 Hierarchies for probabilistic classes using a complete problem

Barak also shows that if BPP has a complete problem, then we can get rid of the advice, obtaining
BPTIME(nd) (BPTIME(nd+1).

3.1 The reductions

As we want to do reductions for fixed-polynomial classes, we need our reductions to be more subtle.

Definition 12. We say that L is BPTIME-hard if there exists a constant c such that for any time-
constructible function t and any language L′ ∈ BPTIME(t) there exists a deterministic t(|x|)c-time
computable function f such that for any x, x ∈ L′ iff f(x) ∈ L.

Note that the constant c is independent of L′ and t. We say L is BPP-complete if L is BPTIME-hard
and L ∈ BPP.

3.2 A little bit about promise problems

Unlike BPP, for PromiseBPP we have a hierarchy, and in particular

PromiseBPTIME(nd) (PromiseBPTIME(nd+1)

for every constant d.

Definition 13 (The promise problem CAP). The promise problem Circuit Acceptance Probability
(CAP) is the pair (CAPY , CAPN) where CAPY contains all circuits C such that Prx[C(x) = 1] > 2

3
and CAPN contains all circuits C such that Prx[C(x) = 1] < 1

3 .

Clearly, CAP ∈ PromiseBPP. A “Cook-Levin”-reasoning will show that:

Claim 14. Let L be a language consistent with CAP (that is, if x ∈ CAPY then x ∈ L and if
x ∈ CAPN then x /∈ L). Then, L is BPTIME-hard.

We thus have the following corollary:

Corollary 15. If there exists a language L such that L is consistent with CAP and L ∈ BPP then
there exists a BPP-complete language.

We will talk more about promise problems in the next lecture.

6

3.3 The hierarchy theorem

We prove:

Theorem 16. Suppose that BPP has a complete problem. Then, there exists a constant c such that
for every time-constructible t it holds that BPTIME(t) (BPTIME(tc).

By Corollary 8, this proves BPTIME(nd) (BPTIME(nd+1) for every constant d ≥ 1.

Proof. Let L be a BPP-complete problem and let ML be its accepting TM that runs in time na

for some constant a. We know that there exists a constant b such that for every time-constructible
function t, every language in BPTIME(t) is reducible to L using a tb-time deterministic reduction.

For a string i, let Mi be the i-th deterministic TM. Define the language K such that x ∈ K iff

M
t(|x|)b
x (x) /∈ L. We have that:

1. K ∈ BPTIME(tO(ab)).

2. K /∈ BPTIME(t).

Item (1) is true since deciding K can be done by returning 1 − ML(M
t(|x|)b
x (x)), and it takes

t(|x|)O(ab) time. To prove item (2), assume towards contradiction that K ∈ BPTIME(t). L is

complete for BPP, so there exists an i such that i ∈ K iff M
t(|i|)b
i (i) ∈ L. Yet, by the definition of

K this happens iff i /∈ K and we get a contradiction.

References

[1] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-
prover interactive protocols. Computational complexity, 1(1):3–40, 1991.

[2] Boaz Barak. A probabilistic-time hierarchy theorem for slightly non-uniform algorithms. In In-
ternational Workshop on Randomization and Approximation Techniques in Computer Science,
pages 194–208. Springer, 2002.

[3] Oded Goldreich, Madhu Sudan, and Luca Trevisan. From logarithmic advice to single-bit
advice. In Electronic Colloquium on Computational Complexity, TR04-093, 2004.

7

