03684155: On the P vs. BPP problem.	12/1/2017 – Lecture 14a
Toda's theorem – Part I	
Amnon Ta-Shma and Dean Doron	

The goal of the next couple of lectures will be to prove Toda's theorm [3], $\mathsf{PH} \subseteq \mathsf{P}^{\#\mathsf{P}}$, which we used to prove the IK theorem.

Define $\oplus P$ as the complexity class of decision problems solvable by an NP machine, where the acceptance condition is that the number of accepting computation paths is odd. An example of a $\oplus P$ problem is "given a graph, does it have an odd number of perfect matchings?". It can be viewed as finding the least significant bit of the answer to the corresponding #P problem. In this lecture we are going to prove the following lemma, which comprises the first part of Toda's proof.

Lemma 1. $PH \subseteq BPP^{\oplus P}$.

We will follow Fortnow's proof [1], but we will need some preliminaries first.

1 The isolation lemma and UniqueCLIQUE

The *isolation lemma*, due to Mulmuley, Vazirani and Vazirani, gives a randomized algorithm to reduce the number of solutions to one, given such a solution exists.

Definition 2. Let X be a set of n elements, and let \mathcal{F} be a family of subsets of X. Assign a weight w(x) to each element, and define the weight of a set $E \in \mathcal{F}$ as $w(E) = \sum_{x \in E} w(x)$. If $\min_{E \in \mathcal{F}} w(E)$ is achieved by a unique $E \in \mathcal{F}$, we say w is isolating for \mathcal{F} .

Lemma 3 ([2]). Let X be a set of n elements, and let \mathcal{F} be a family of subsets of X. Let $w : X \to [N]$ be a random function, each w(x) is chosen independently and uniformly. Then,

$$\Pr_{w}[w \text{ is isolating for } \mathcal{F}] \geq 1 - \frac{n}{N}.$$

Proof. Draw w uniformly at random. For an element $x \in X$, set

$$\alpha(x) = \min_{E \in \mathcal{F}, x \notin E} w(E) - \min_{E \in \mathcal{F}, x \in E} w(E \setminus \{x\}).$$

Evaluation of $\alpha(x)$ does not require knowledge of w(x), so we have that

$$\Pr_w[w(x) = \alpha(x)] = \frac{1}{N}$$

and

$$\Pr_{w}\left[\exists x \in X, \ w(x) = \alpha(x)\right] \leq \frac{n}{N}.$$

But if w induces two minimal sets $A, B \in \mathcal{F}$ and $x \in A \setminus B$ then

$$\min_{\substack{E \in \mathcal{F}, x \notin E}} w(E) = w(B)$$
$$\min_{E \in \mathcal{F}, x \in E} w(E \setminus \{x\}) = w(A) - w(x),$$

so $\alpha(x) = w(B) - w(A) + w(x) = w(x)$. Thus, if w is not isolating for \mathcal{F} then $w(x) = \alpha(x)$ for some $x \in X$, and we have already seen that the last event can happen with probability at most $\frac{n}{N}$. \Box

The isolation lemma gives a probabilistic reduction from CLIQUE to UniqueCLIQUE which we will now see. As the reduction from CLIQUE to SAT preserves the number of accepting witnesses, a probabilistic reduction from SAT to UniqueSAT follows. A probabilistic reduction to UniqueSAT was first given by Valiant and Vazirani [4] using another technique.

Theorem 4. There is a probabilistic polynomial-time procedure that, given a graph G and an integer k, outputs G' and k' such that:

- If G has no clique of size k then G' has no clique of size k'.
- If G has a clique of size k then, with a non-negligible probability, G' has exactly one clique of size k'.

Proof. Given an input $\langle G = (V, E), k \rangle$, let |V| = n. The algorithm choose $w : V \to [2n]$ uniformly at random. By the isolation lemma, with probability at least $\frac{1}{2}$, the clique of maximal weight will be unique (it is easy to see that the proof also works for the maximal weight).

Let G' be the following graph: For every vertex $v \in V$, construct a clique of size 2nk + w(v). For every edge $(u, v) \in E$, connect the u-clique to the v-clique in G' (every vertex to every vertex). Next, choose a random integer $r \in [2nk]$ and return $\langle G', k' = 2nk^2 + r \rangle$. Now:

- If $\langle G, k \rangle \notin \text{CLIQUE}$ then the size of the smallest clique in G' is at most $(k-1) \cdot (2nk+2n) < 2nk^2$ so $\langle G', k' \rangle \notin \text{UniqueCLIQUE}$.
- If $\langle G, k \rangle \in \text{CLIQUE}$ then with probability at least $\frac{1}{2}$ there is a unique clique $C \subseteq V$ of size k with a maximal w(C). Assume this is indeed the case.

The size of the clique in G' corresponding to C is $2nk^2 + w(C)$ and note that $2nk^2 + 1 \le 2nk^2 + w(C) \le 2nk^2 + 2nk$. For any other k-clique $C' \subseteq C$, the corresponding clique in G' has weight $2nk^2 + w(C') < 2nk^2 + w(C)$.

We already saw that a clique of size smaller than k in G corresponds to a clique of size smaller than $2nk^2$ in G'. A (k + 1)-clique in G corresponds to a clique of size larger than 2nk(k+1) + k + 1 > k'.

It follows that for the correct r = w(C) we will have a unique clique of size k'. Hence, the probability that $\langle G, k \rangle \in \text{UniqueCLIQUE}$ is at least $\frac{1}{4nk}$.

2 Preliminary results

We first show:

Theorem 5. $\oplus \mathsf{P}^{\oplus \mathsf{P}} = \oplus \mathsf{P}$.

Proof. Let $L \in \bigoplus \mathsf{P}^{\oplus \mathsf{P}}$, equipped with an accepting NP machine M making oracle calls to some $\oplus \mathsf{P}$ -complete language A having an accepting NP machine M_A . We will show an NP machine N accepting L with no oracle calls. That is, $x \in L$ iff the number of accepting path of N(x) is odd. N on an input x behaves as follows:

- 1. N guesses a computation path w of M on input x, which includes possible oracle answers to the query strings appearing in w.
- 2. If w is a rejecting path of M on x then N enters a rejecting step. Otherwise, it goes to the next step.
- 3. Let y_1, \ldots, y_m be all the query strings which appear in w and whose corresponding oracle answers in w are Yes and likewise let z_1, \ldots, z_ℓ be all the query strings which appear in wand whose corresponding oracle answers in w are No. Then, N simulates M_A successively for each y_i and z_i in the following manner:
 - (a) For each y_i , it simply simulates M_A . If M_A enters a rejecting state then so does N. Otherwise, it proceeds to the next simulation.
 - (b) For each z_i , it nondeterministically selects one of the following processes:
 - N goes to the next simulation.
 - N simulates M_A on z_i . If M_A enters a rejecting state, then so does N. Otherwise, it goes to the next simulation.
- 4. N enters an accepting state.

For the correctness, we classify all possible accepting paths of M on x into two groups, one of which consists of accepting paths with the *correct* oracle answers to A and the remaining ones (that contain at least one inconsistent oracle call).

From the definition of N we can see that:

- Every accepting path in the first group is followed by an *odd* number of accepting paths in steps 3 and 4 since on the *y*-s we always have an odd number of accepting paths, and on the *z*-s we always have an odd number of accepting paths.
- Every accepting path in the second group is followed by an *even* number of accepting paths in steps 3 and 4. To see this, observe that if we do not err on any of the *y*-s (odd number of accepting paths) we must err on at least one *z*, leading to an even number of accepting paths in the *z*-s, for a total of even number of accepting paths. If we do err on one of the *y*-s, we have an even number of accepting paths and a total of even number of accepting paths, regardless of how we act on the *z*-s.

Having established that, we have that if $x \in L$ then the number of accepting paths in the first group is odd, so the number of accepting paths of N is odd as well $(odd \cdot odd + ? \cdot even = odd)$, and similarly if $x \notin L$ then the number of accepting paths in the first group is even $(even \cdot odd + ? \cdot even = even)$, so the number of accepting paths of N is even – as desired.

Theorem 6. If $NP \subseteq BPP$ then $PH \subseteq BPP$.

Proof. As an exercise.

As a corollary, we have:

Lemma 7. NP \subseteq BPP^{\oplus P}.

Proof. It is sufficient to show that $\text{CLIQUE} \in \mathsf{BPP}^{\oplus \mathsf{P}}$. Given an input $\langle G, k \rangle$, use the probabilistic algorithm from Theorem 4 to produce G' and k' and accept iff the NP machine for CLIQUE on input $\langle G', k' \rangle$ has an odd number of accepting paths (using the $\oplus \mathsf{P}$ oracle).

If $\langle G, k \rangle \notin$ CLIQUE then there will always be zero accepting paths and we will always reject. If $\langle G, k \rangle \in$ CLIQUE then with non-negligible probability there will be exactly one accepting path and we will accept.

3 A proof of Toda's first lemma

When we relativize a class like $\mathsf{BPP}^{\oplus \mathsf{P}}$ to an oracle A, both the BPP and the $\oplus \mathsf{P}$ machines should have access to the oracle A. The BPP machine can make its queries to A via the $\oplus \mathsf{P}^A$ oracle so we have $(\mathsf{BPP}^{\oplus \mathsf{P}})^A = \mathsf{BPP}^{(\oplus \mathsf{P}^A)}$, which we will write simply as $\mathsf{BPP}^{\oplus \mathsf{P}^A}$.

We are now ready to prove that $\mathsf{PH} \subseteq \mathsf{BPP}^{\oplus \mathsf{P}}$.

Proof. Lemma 7 relativizes, so we have

$$\mathsf{NP}^{\oplus\mathsf{P}} \subset \mathsf{BPP}^{\oplus\mathsf{P}^{\oplus\mathsf{P}}}$$

By Theorem 5,

 $NP^{\oplus P} \subset BPP^{\oplus P}$.

Theorem 6 relativizes as well, so $\mathsf{NP}^{\oplus \mathsf{P}} \subseteq \mathsf{BPP}^{\oplus \mathsf{P}}$ implies

 $\mathsf{PH}^{\oplus \mathsf{P}} \subset \mathsf{BPP}^{\oplus \mathsf{P}}.$

However, $\mathsf{PH} \subseteq \mathsf{PH}^{\oplus \mathsf{P}}$ so we finally have $\mathsf{PH} \subseteq \mathsf{BPP}^{\oplus \mathsf{P}}$ and we are done.

References

- [1] Lance Fortnow. A simple proof of toda's theorem. Theory OF Computing, 5(1):135–140, 2009.
- [2] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 345–354. ACM, 1987.
- [3] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5):865–877, 1991.
- [4] Leslie G Valiant and Vijay V Vazirani. NP is as easy as detecting unique solutions. *Theoretical Computer Science*, 47:85–93, 1986.