03684155: On the P vs. BPP problem.

Toda's theorem – Part II

Amnon Ta-Shma and Dean Doron

Last lecture we proved that $\mathsf{PH} \subseteq \mathsf{BPP}^{\oplus \mathsf{P}}$. Here we will prove that:

Lemma 1. $\mathsf{PP}^{\oplus \mathsf{P}} \subseteq \mathsf{P}^{\#\mathsf{P}}$.

As $\mathsf{BPP} \subseteq \mathsf{PP}$, both lemmas imply Toda's theorem, that $\mathsf{PH} \subseteq \mathsf{P}^{\#\mathsf{P}}$.

1 The class GapP

Definition 2. The class GapP is the class of functions f such that for some NP machine M, f(x) is the number of accepting paths minus the number of rejecting paths of M on x.

GapP functions are closed under under exponential-size sums and polynomial-size products (we will see this in the exercise). Further:

Claim 3. $\#P \subseteq GapP$.

Proof. Given $f \in \#P$ corresponding to an NP machine M, let N be the NP machine that on input x: Simulates M(x). If it accepted, accept and otherwise branch to an accepting state and a rejecting one.

Let a and r be the number of accepting and rejecting paths of M on x. Thus, the number of accepting paths of N is a + r and the number of rejecting paths of N is r. Thus, the GapP function corresponds to N is (a + r) - r = a, as desired.

Claim 4. $FP^{GapP} = FP^{\#P}$.

Proof. (Sketch). The only direction left to prove is $\mathsf{FP}^{\mathsf{GapP}} \subseteq \mathsf{FP}^{\#\mathsf{P}}$. Let $L \in \mathsf{FP}^{\mathsf{GapP}}$ and assume it makes an oracle call to a function $f \in \mathsf{GapP}$. We will see in the exercise that every GapP function is a difference between a $\#\mathsf{P}$ function and an FP function. Thus, we can compute its output with an oracle to $\#\mathsf{P}$ and an FP computation.

We have the following GapP characterization of $\oplus P$:

Claim 5. A language L is in $\oplus P$ if and only if there is a GapP function f such that:

- If $x \in L$ then $f(x) \equiv 1 \pmod{2}$.
- If $x \notin L$ then $f(x) \equiv 0 \pmod{2}$.

Proof. The left-to-right direction follows from Claim 3. For the other direction, consider such a GapP function with a corresponding NP machine M. Let N be the following NP machine: On input x, it branches twice, simulating M(x) on one branch and $\overline{M}(x)$ on the other. Clearly,

$$\#acc_N(x) = acc_M(x) + rej_M(x) = (\#acc_M(x) - \#rej_M(x)) + 2 \cdot \#rej_M(x),$$

so if $x \in L$ then $\#acc_M(x) - \#rej_M(x)$ is odd and $acc_N(x)$ is odd as well, and if $x \notin L$ then $\#acc_M(x) - \#rej_M(x)$ is even and $acc_N(x)$ is even as well. Thus, $L \in \oplus \mathsf{P}$ due to the NP machine N.

2 Characterizing $\mathsf{PP}^{\oplus \mathsf{P}}$

We define PP^A using P^A predicates.

Claim 6. A language L is in PP^A if and only if there is a language $B \in P^A$ and a polynomial q such that:

• If $x \in L$ then

$$\left| \left\{ y \in \{0,1\}^{q(|x|)} : (x,y) \in B \right\} \right| \ge \left| \left\{ y \in \{0,1\}^{q(|x|)} : (x,y) \notin B \right\} \right|$$

• If $x \notin L$ then

$$\left| \left\{ y \in \{0,1\}^{q(|x|)} : (x,y) \in B \right\} \right| < \left| \left\{ y \in \{0,1\}^{q(|x|)} : (x,y) \notin B \right\} \right|$$

Proof. The left-to-right direction follows immediately from the definition of PP. For the other direction, consider such a language B with a corresponding P^A machine M(x,y). Let N be the NP^A machine that on input x, guesses $y \in \{0,1\}^{q(|x|)}$, simulates M(x,y) and answers accordingly. The correctness easily follows.

Combining the above two claims, and the fact that $\mathsf{P}^{\oplus \mathsf{P}} = \oplus \mathsf{P}$ implied by what we did last lecture, we have:

Lemma 7. A language L is in $PP^{\oplus P}$ if and only if there is a GapP function f and a polynomial q such that:

- If $x \in L$ then $\left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 1 \pmod{2} \right\} \right| \ge \left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 0 \pmod{2} \right\} \right|$
- If $x \notin L$ then

$$\left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 1 \pmod{2} \right\} \right| \ < \ \left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 0 \pmod{2} \right\} \right|$$

3 Proving $\mathsf{PP}^{\oplus \mathsf{P}} \subseteq \mathsf{P}^{\#\mathsf{P}}$

Our plan is to give a $\mathsf{FP}^{\mathsf{GapP}}$ algorithm to compute

$$\left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 1 \pmod{2} \right\} \right|$$

and

$$\left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 0 \pmod{2} \right\} \right|.$$

With that algorithm, we can prove $\mathsf{PP}^{\oplus \mathsf{P}} \subseteq \mathsf{P}^{\#\mathsf{P}}$.

Proof. Let $L \in \mathsf{PP}^{\oplus \mathsf{P}}$. By Lemma 7, there exists a GapP function f and a polynomial q such that:

• If $x \in L$ then

$$\left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 1 \pmod{2} \right\} \right| \ge \left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 0 \pmod{2} \right\} \right|$$

• If $x \notin L$ then

$$\left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 1 \pmod{2} \right\} \right| < \left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 0 \pmod{2} \right\} \right|$$

We compute in $\mathsf{FP}^{\mathsf{GapP}}$ the above two quantities, and decide accordingly. As $\mathsf{FP}^{\mathsf{GapP}} = \mathsf{FP}^{\#\mathsf{P}}$, $L \in \mathsf{P}^{\#\mathsf{P}}$.

So, fix a GapP function f(x, y). Consider the polynomial $g(m) = 3m^2 - 2m^3$. One can verify that indeed:

Lemma 8. For all m,

- 1. If $m \equiv 0 \pmod{2^j}$ then $g(m) \equiv 0 \pmod{2^{2j}}$.
- 2. If $m \equiv 1 \pmod{2^j}$ then $g(m) \equiv 1 \pmod{2^{2j}}$.
- 3. If $m \equiv 0 \pmod{2}$ then $g^{(k)}(m) \equiv 0 \pmod{2^{2^k}}$.
- 4. If $m \equiv 1 \pmod{2}$ then $g^{(k)}(m) \equiv 1 \pmod{2^{2^k}}$.

Now, let $h(x,y) = g^{(1+\log q(|x|))}(f(x,y))$. As f is a GapP function, and GapP functions are closed under exponential-size sums and polynomial-size products, h(x,y) is itself a GapP function. By the above lemma,

- If $f(x, y) \equiv 1 \pmod{2}$ then $h(x, y) \equiv 1 \pmod{2^{q(|x|)+1}}$.
- If $f(x, y) \equiv 0 \pmod{2}$ then $h(x, y) \equiv 0 \pmod{2^{q(|x|)+1}}$.

Define r(x) as

$$r(x) \; = \; \sum_{y \in \{0,1\}^{q(|x|)}} h(x,y),$$

which is also a GapP function. We then have:

$$r(x) \mod 2^{q(|x|)+1} = \left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 1 \pmod{2} \right\} \right|$$

and

$$2^{q(|x|)} - \left(r(x) \mod 2^{q(|x|)+1}\right) = \left| \left\{ y \in \{0,1\}^{q(|x|)} : f(x,y) \equiv 0 \pmod{2} \right\} \right|.$$

The above two computations can be done in $\mathsf{FP}^{\mathsf{GapP}}$, so we are done.