03684155: On the P vs. BPP problem. 22/1/2017 — Lecture 14b

Toda’s theorem — Part 11

Amnon Ta-Shma and Dean Doron

Last lecture we proved that PH C BPP®P. Here we will prove that:

Lemma 1. PP®P C P#P,

As BPP C PP, both lemmas imply Toda’s theorem, that PH C P#P.

1 The class GapP

Definition 2. The class GapP is the class of functions f such that for some NP machine M, f(z)
s the number of accepting paths minus the number of rejecting paths of M on x.

GapP functions are closed under under exponential-size sums and polynomial-size products (we will
see this in the exercise). Further:

Claim 3. #P C GapP.

Proof. Given f € #P corresponding to an NP machine M, let N be the NP machine that on
input z: Simulates M (z). If it accepted, accept and otherwise branch to an accepting state and a
rejecting one.

Let @ and r be the number of accepting and rejecting paths of M on x. Thus, the number of
accepting paths of N is a+r and the number of rejecting paths of IV is . Thus, the GapP function
corresponds to N is (a + 1) —r = a, as desired. O

Claim 4. FPG2PP — Fp#P,

Proof. (Sketch). The only direction left to prove is FP®?PP C FP#P_ Let L € FP?PP and assume it
makes an oracle call to a function f € GapP. We will see in the exercise that every GapP function
is a difference between a #P function and an FP function. Thus, we can compute its output with
an oracle to #P and an FP computation. O

We have the following GapP characterization of ®P:

Claim 5. A language L is in &P if and only if there is a GapP function f such that:

o [fx €L then f(z) =1 (mod2).
o Ifx ¢ L then f(x) =0 (mod2).

Proof. The left-to-right direction follows from Claim 3. For the other direction, consider such a
GapP function with a corresponding NP machine M. Let N be the following NP machine: On input
x, it branches twice, simulating M (x) on one branch and M (z) on the other. Clearly,

#acey(x) = acepy(x) +rejy(x) = (#acey(x) — #rejuy(x)) + 2 - #rejy(x),

so if € L then #accy(z) — #reju(z) is odd and acey(x) is odd as well, and if x ¢ L then

#accepr(x) — #rejy(x) is even and acen(x) is even as well. Thus, L € &P due to the NP machine
N. O

2 Characterizing PP®F

We define PP4 using P4 predicates.

Claim 6. A language L is in Pp4 if and only if there is a language B € P4 and a polynomial q
such that:

o [fx € L then

v

{y € {0, 1}q(|x|) :(z,y) € B} {y € {0, 1}q(‘x|) D (myy) € B}

o Ifx ¢ L then

{y € {0,1}90=D . (2, 4) € B} < {y € {0,119070 . (2, 4) ¢ B}

Proof. The left-to-right direction follows immediately from the definition of PP. For the other
direction, consider such a language B with a corresponding P4 machine M(z,y). Let N be the
NP4 machine that on input z, guesses y € {0, 1}‘1('33‘), simulates M (x,y) and answers accordingly.
The correctness easily follows. O

Combining the above two claims, and the fact that PP = @P implied by what we did last lecture,
we have:

Lemma 7. A language L is in PP®F if and only if there is a GapP function f and a polynomial q
such that:

o Ifx € L then

{y € {0,130 (2 4) =1 (mod 2)}

v

{ve 0.1 fa,y) = 0 (mod 2)}
o Ifx ¢ L then

{y € {0,130 (2 y) =1 (mod 2)} < {y € {0,1390D : f(z,y) =0 (mod 2)}

3 Proving PP®F C p#P

Our plan is to give a FP®?PP algorithm to compute

Hy e {0, 1}q(|m|) : f(xz,y) =1 (mod 2)}’

and

Hy € {0,130 (2, 4) =0 (mod 2)}‘ .

With that algorithm, we can prove PPOP C P#P,

Proof. Let L € PP®P. By Lemma 7, there exists a GapP function f and a polynomial ¢ such that:
o If x € L then
{ye 0. payy =1 (mod 2} = [{ye0.1300: f(z,y) =0 (mod 2)}|
o If z ¢ L then

({y e {0,130 f(z,9) = 1 (mod 2)}\ < Hy e 10,1370 ;. £(z,4) = 0 (mod 2)}‘

We compute in FP®PP the above two quantities, and decide accordingly. As FP®PP — Fp#P
L € P#P. O

So, fix a GapP function f(z,y). Consider the polynomial g(m) = 3m? — 2m?. One can verify that
indeed:

Lemma 8. For all m,

1. If m =0 (mod 27) then g(m) =0 (mod 2%7).

(
2. If m =1 (mod 27) then g(m) =1 (mod 2%/).
3. Ifm =0 (mod 2) then g®*)(m) =0 (mod 22k).
(

4. If m=1 (mod 2) then g™ (m) =1 (mod 22°).

Now, let h(z,y) = g(ttleealzD)(f(z,4)). As f is a GapP function, and GapP functions are closed
under exponential-size sums and polynomial-size products, h(x,y) is itself a GapP function. By the
above lemma,

o If f(z,y) =1 (mod 2) then h(z,y) =1 (mod 22(=D+1),
e If f(z,y) =0 (mod 2) then h(z,y) = 0 (mod 29(=N+1),

Define r(z) as

r(@) = Y hlzy),

ye{o’l}quﬂ)

which is also a GapP function. We then have:
r(x) mod 20(0eD+1 — Hy € {0,1390D : (2, y) =1 (mod 2)}‘

and

ga(l=) _ (r(m) mod 2‘1(|m|)+1) - Hy € {0, 1}q(‘x|) : f(z,y) =0 (mod 2)}‘ .

PGapP

The above two computations can be done in F , S0 we are done.

