
03684155: On the P vs. BPP problem. 22/1/2017 – Lecture 14b

Toda’s theorem – Part II

Amnon Ta-Shma and Dean Doron

Last lecture we proved that PH ⊆ BPP⊕P. Here we will prove that:

Lemma 1. PP⊕P ⊆ P#P.

As BPP ⊆ PP, both lemmas imply Toda’s theorem, that PH ⊆ P#P.

1 The class GapP

Definition 2. The class GapP is the class of functions f such that for some NP machine M , f(x)
is the number of accepting paths minus the number of rejecting paths of M on x.

GapP functions are closed under under exponential-size sums and polynomial-size products (we will
see this in the exercise). Further:

Claim 3. #P ⊆ GapP.

Proof. Given f ∈ #P corresponding to an NP machine M , let N be the NP machine that on
input x: Simulates M(x). If it accepted, accept and otherwise branch to an accepting state and a
rejecting one.

Let a and r be the number of accepting and rejecting paths of M on x. Thus, the number of
accepting paths of N is a+ r and the number of rejecting paths of N is r. Thus, the GapP function
corresponds to N is (a + r)− r = a, as desired.

Claim 4. FPGapP = FP#P.

Proof. (Sketch). The only direction left to prove is FPGapP ⊆ FP#P. Let L ∈ FPGapP and assume it
makes an oracle call to a function f ∈ GapP. We will see in the exercise that every GapP function
is a difference between a #P function and an FP function. Thus, we can compute its output with
an oracle to #P and an FP computation.

We have the following GapP characterization of ⊕P:

Claim 5. A language L is in ⊕P if and only if there is a GapP function f such that:

• If x ∈ L then f(x) ≡ 1 (mod2).

• If x /∈ L then f(x) ≡ 0 (mod2).

Proof. The left-to-right direction follows from Claim 3. For the other direction, consider such a
GapP function with a corresponding NP machine M . Let N be the following NP machine: On input
x, it branches twice, simulating M(x) on one branch and M(x) on the other. Clearly,

#accN (x) = accM (x) + rejM (x) = (#accM (x)−#rejM (x)) + 2 ·#rejM (x),

1

so if x ∈ L then #accM (x) − #rejM (x) is odd and accN (x) is odd as well, and if x /∈ L then
#accM (x)−#rejM (x) is even and accN (x) is even as well. Thus, L ∈ ⊕P due to the NP machine
N .

2 Characterizing PP⊕P

We define PPA using PA predicates.

Claim 6. A language L is in PPA if and only if there is a language B ∈ PA and a polynomial q
such that:

• If x ∈ L then∣∣∣{y ∈ {0, 1}q(|x|) : (x, y) ∈ B
}∣∣∣ ≥ ∣∣∣{y ∈ {0, 1}q(|x|) : (x, y) /∈ B

}∣∣∣
• If x /∈ L then∣∣∣{y ∈ {0, 1}q(|x|) : (x, y) ∈ B

}∣∣∣ <
∣∣∣{y ∈ {0, 1}q(|x|) : (x, y) /∈ B

}∣∣∣
Proof. The left-to-right direction follows immediately from the definition of PP. For the other
direction, consider such a language B with a corresponding PA machine M(x, y). Let N be the

NPA machine that on input x, guesses y ∈ {0, 1}q(|x|), simulates M(x, y) and answers accordingly.
The correctness easily follows.

Combining the above two claims, and the fact that P⊕P = ⊕P implied by what we did last lecture,
we have:

Lemma 7. A language L is in PP⊕P if and only if there is a GapP function f and a polynomial q
such that:

• If x ∈ L then∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 1 (mod 2)
}∣∣∣ ≥ ∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 0 (mod 2)

}∣∣∣
• If x /∈ L then∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 1 (mod 2)

}∣∣∣ <
∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 0 (mod 2)

}∣∣∣
3 Proving PP⊕P ⊆ P#P

Our plan is to give a FPGapP algorithm to compute∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 1 (mod 2)
}∣∣∣

and ∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 0 (mod 2)
}∣∣∣ .

With that algorithm, we can prove PP⊕P ⊆ P#P.

2

Proof. Let L ∈ PP⊕P. By Lemma 7, there exists a GapP function f and a polynomial q such that:

• If x ∈ L then∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 1 (mod 2)
}∣∣∣ ≥ ∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 0 (mod 2)

}∣∣∣
• If x /∈ L then∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 1 (mod 2)

}∣∣∣ <
∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 0 (mod 2)

}∣∣∣
We compute in FPGapP the above two quantities, and decide accordingly. As FPGapP = FP#P,
L ∈ P#P.

So, fix a GapP function f(x, y). Consider the polynomial g(m) = 3m2 − 2m3. One can verify that
indeed:

Lemma 8. For all m,

1. If m ≡ 0 (mod 2j) then g(m) ≡ 0 (mod 22j).

2. If m ≡ 1 (mod 2j) then g(m) ≡ 1 (mod 22j).

3. If m ≡ 0 (mod 2) then g(k)(m) ≡ 0 (mod 22
k
).

4. If m ≡ 1 (mod 2) then g(k)(m) ≡ 1 (mod 22
k
).

Now, let h(x, y) = g(1+log q(|x|))(f(x, y)). As f is a GapP function, and GapP functions are closed
under exponential-size sums and polynomial-size products, h(x, y) is itself a GapP function. By the
above lemma,

• If f(x, y) ≡ 1 (mod 2) then h(x, y) ≡ 1 (mod 2q(|x|)+1).

• If f(x, y) ≡ 0 (mod 2) then h(x, y) ≡ 0 (mod 2q(|x|)+1).

Define r(x) as

r(x) =
∑

y∈{0,1}q(|x|)
h(x, y),

which is also a GapP function. We then have:

r(x) mod 2q(|x|)+1 =
∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 1 (mod 2)

}∣∣∣
and

2q(|x|) −
(
r(x) mod 2q(|x|)+1

)
=
∣∣∣{y ∈ {0, 1}q(|x|) : f(x, y) ≡ 0 (mod 2)

}∣∣∣ .
The above two computations can be done in FPGapP, so we are done.

3

