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List-decoding
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1 List Decoding

Definition 1. We say that an [n, k]q code C is (τ, L)-list-decodable if for every word w ∈ Fnq , at
most L codewords from C agree with w in at least τn coordinates.

If we fix a codeword c and take a random word w, we expect 1/q agreement between c and w, and
furthermore, with high probability there is such a 1/q agreement. Therefore, if we pick a random
w, we expect there are many codewords with 1/q agreement with it. Specifically, there exists a
word w with that many codewords having 1/q agreement with it. Thus, L must be large when
τ = 1

q . We do want, however, codes that have a small L when τ � 1
q .

We state (without a proof) the Johnson’s bound that shows that good distance implies decent
list-decoding capabilities.

Theorem 2. If τ ≥
√

1− δ then any [n, k, d = δn]q code is (τ, qnd) list-decodable.

The Johnoson’s bound says that every code with a good distance has good list decoding up to
some point. It is possible (and also true) that some codes outperform the Johnson’s bound. For
example, random codes have, w.h.p., much better list decoding. There are also explicit codes that
do much better than the Johnson’s bound.

We say an algorithm solves the list-decoding problem if given a word w and τ it outputs all the
codewords in C that have τ -agreement with w.

In fact, one can say something tighter, we state it (without proof, but we will get back to it in the
exercises) only for the binary case, and we refer to the book for the general case and the proofs.

Lemma 3. (The Johnson’s bound for binary codes) Let C be a (n, k, d)2 code. I.e., C is a binary
code of length n with 2k codewords and distance d. notice that C is not necessarily linear. Then, x

• C is (τ, 2n) list decodable for τ = 1
2(1 +

√
1− 2δ), where as usual δ = d

n .

• For every L, C is (τ ′, L) list decodable for τ ′ = 1
2(1 +

√
1− 2δ + 2δ

L ).

We recommend the reader to check that the first item implies Theorem 2 for the binary case, and is
fact slightly tighter. The second item shows that with a bit more agreement the number of possible
solutions drops rapidly and becomes independent of n. The case L = 1 is not interesting, but
already L = 2 is interesting. We can deduce from the second item (check it!):

Lemma 4. Suppose C is a (n, k, d = (12 − ε)n)2 code. Then C is (τ ′ = 1
2 + 2

√
ε, L = 1

ε ) list
decodable.

For example, for the Hadamard code which is a [n = 2k, k, n2 ]2 code we have,

Corollary 5. For every k, Had : {0, 1}k → {0, 1}2
k

is
(
1
2 + ε, 4

ε2

)
-list-decodable.
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1.1 List decoding Reed-Solomon codes up to the Johnson’s bound

We first study the list-decoding of univariate polynomials. The lecture today closely follows Chapter
13 of the book by Guruswami, Rudra and Sudan [1]. We cite the theorem we will prove.

Theorem 6 ([2]). There exists an algorithm that given as input:

• Code parameters: q, n ≤ q, deg,

• A sequence of n distinct pairs {(αi, yi)}ni=1, αi, yi ∈ Fq (alternatively, we may think of this as
a potentially ”corrupted” codeword), and,

• An agreement parameter τ >
√

2deg
n ,

outputs a list of all polynomials p1, . . . , p` of degree at most deg satisfying | {i ∈ [n] : pj(αi) = yi} | ≥
τn. Furthermore, the list size ` is at most 2

τ . The algorithm runs in time poly(n, log q).

For the (beautiful) proof look at [1, Chapter 13].

Notice that for RS codes the Johnson’s bound shows that if the agreement is at least
√
n(n− d) =√

n · deg the list decoding size L is at most qnd = poly(n, q). The agreement we require in Theorem
6 is τn =

√
2n · deg, i.e., larger by a factor of

√
2. Indeed, with some effort and several beautiful

ideas, Theorem 6 can be improved to match the Johnson’s bound. We will not cover this in class,
and the interested readers are referred to [1]. We remark that it is an open problem whether the
Reed-Solomon code has good list decoding beyond the Johnson’s bound. We also remark that the
list size we got was smaller than what we stated in Theorem 2.
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