
03684155: On the P vs. BPP problem. 13/11/16 – Lecture 3b

The STV worst-case to average-case reduction

Amnon Ta-Shma and Dean Doron

In this lecture we do the following:

• We explain the connection between local list-decoding and worst-case to average-case reduc-
tions for PSPACE,

• We prove that if there exists a language in PSPACE that is worst-case hard for SIZE(s), then
there exists another language in PSPACE that has extreme average-case hardness for SIZE(s′),
for s′ slightly smaller than s.

1 Local list decoding and worst-case to average-case reductions

Theorem 1. Suppose f : {0, 1}n → {0, 1} is a function such that Size(f) > s(n). We also view f
as f : [N = 2n]→ {0, 1} or alternatively as f ∈ {0, 1}N (i.e., we represent the function by its truth
table). Given ε > 0, let C be a [N ′, N ] binary code such that:

• C is a (ε, L = poly(logN, 1
ε )) locally list-decodable code, and,

• N ′ = poly(N, 1
ε ).

Define f ′ = C(f) ∈ {0, 1}N
′
. Again we view f ′ : [N ′] → {0, 1} or equivalently as f ′ : {0, 1}n

′
→

{0, 1} where N ′ = 2n
′

(so we identify a function with its truth-table). Then, there exists a constant
c such that Size 1

2
+ε(f

′)(n′) >
(

ε
n′

)c · s(n′).
Proof. Let A′ be the smallest circuit computing f ′ correctly on more than a 1

2 + ε fraction of the

inputs of length n′, and let n′ be its size. Viewing f ′ as a word in FN ′
2 , there exists j ∈ [L] such that

with high probability, RA(f ′, j, ·) = C(f) where R is the list-decoding algorithm for C guaranteed
by Theorem 9 of Lecture 3.

Since the running time of R is t = poly(logN ′, 1
ε ) oracle calls of A, for every j ∈ [L] there exists a

circuit Mj of size at most t ·s′poly(n
′

ε ). Let Mj0 be the circuit that outputs f with high probability
(we stress that getting f from the output C(f) is easy).

The circuit Mj0 uses randomness, however by standard amplification (thus paying in size) we can
bring down the error to be exponentially-small so there exists a fixing of the random bits that is
good for every input (prove it). The “derandomized” variant of Mj0 is of size O(n′) · poly(n

′

ε ) · s′,
and computes f exactly. Since, it must be at least s(n) we get a lower bound on s′.

Plugging-in a small enough ε = s−Ω(1) and assuming ε < 1
n , we obtain:

Corollary 2. Suppose f : {0, 1}n → {0, 1} is a function that no circuit of size s(n) computes in

the worst case. Then, there exists an explicit function f ′ = C(f) : {0, 1}O(n) → {0, 1} such that no
circuit of size s′ =

√
s computes f ′ correctly on more than a 1

2 + s−Ω(1) fraction of the inputs.

1



2 Worst-case to average case reductions for PSPACE

We next observe that if f ∈ PSPACE (as a function on an n bit input), and we choose C to be the
RM ◦Had we used in Lecture 4, then f ′ = C(f), viewed as a function on n′ bits, is also in PSPACE.

Proof. View f as f : [N = 2n]→ {0, 1} and let i ∈ {0, 1}n
′

= [N ′]. Denote RM : {0, 1}N → FN0
q with

H = n, m = n
logn and q = poly(n). Take Had : {0, 1}log q → {0, 1}q. Then N ′ = N0 ·q = poly(N), so

n′ = O(n). Write i as i = (a, b) where a ∈ [N0] and b ∈ Fq, and recall that f ′(i) = Had((RM(f))a)b =
〈RM(f)a, b〉2.

It is then left to show how to compute a specific index of RM(f) in a space-efficient way (and using
f ∈ PSPACE). RM(f) is viewed as a multivariate polynomial p : Fm

q → Fq found by interpolation.
We leave it as an exercise (do it!). Thus, f ′ is also in PSPACE.

Clearly, a similar result holds for class above PSPACE (such as E).

We can therefore deduce the following strong worst-case to average-case reduction for PSPACE:

Theorem 3. If there exists an f = {fn} ∈ PSPACE such that Size(f) > s(n), then there exists
another f ′ =

{
f ′n′
}
∈ PSPACE such that Size 1

2
+s(n′)−Ω(1)(f ′) >

√
s(n).

2


