03684155: On the P vs. BPP problem.

13/11/16 – Lecture 3b

The STV worst-case to average-case reduction Amnon Ta-Shma and Dean Doron

In this lecture we do the following:

- We explain the connection between local list-decoding and worst-case to average-case reductions for PSPACE,
- We prove that if there exists a language in PSPACE that is worst-case hard for SIZE(s), then there exists another language in PSPACE that has extreme average-case hardness for SIZE(s'), for s' slightly smaller than s.

1 Local list decoding and worst-case to average-case reductions

Theorem 1. Suppose $f : \{0,1\}^n \to \{0,1\}$ is a function such that Size(f) > s(n). We also view f as $f : [N = 2^n] \to \{0,1\}$ or alternatively as $f \in \{0,1\}^N$ (i.e., we represent the function by its truth table). Given $\varepsilon > 0$, let C be a [N', N] binary code such that:

- C is a $(\varepsilon, L = \text{poly}(\log N, \frac{1}{\varepsilon}))$ locally list-decodable code, and,
- $N' = \operatorname{poly}(N, \frac{1}{\epsilon}).$

Define $f' = C(f) \in \{0,1\}^{N'}$. Again we view $f' : [N'] \to \{0,1\}$ or equivalently as $f' : \{0,1\}^{n'} \to \{0,1\}$ where $N' = 2^{n'}$ (so we identify a function with its truth-table). Then, there exists a constant c such that $\operatorname{Size}_{\frac{1}{2} + \varepsilon}(f')(n') > \left(\frac{\varepsilon}{n'}\right)^c \cdot s(n')$.

Proof. Let A' be the smallest circuit computing f' correctly on more than a $\frac{1}{2} + \varepsilon$ fraction of the inputs of length n', and let n' be its size. Viewing f' as a word in $\mathbb{F}_2^{N'}$, there exists $j \in [L]$ such that with high probability, $R^A(f', j, \cdot) = C(f)$ where R is the list-decoding algorithm for C guaranteed by Theorem 9 of Lecture 3.

Since the running time of R is $t = \text{poly}(\log N', \frac{1}{\varepsilon})$ oracle calls of A, for every $j \in [L]$ there exists a circuit M_j of size at most $t \cdot s' \text{poly}(\frac{n'}{\varepsilon})$. Let M_{j_0} be the circuit that outputs f with high probability (we stress that getting f from the output C(f) is easy).

The circuit M_{j_0} uses randomness, however by standard amplification (thus paying in size) we can bring down the error to be exponentially-small so there exists a fixing of the random bits that is good for every input (prove it). The "derandomized" variant of M_{j_0} is of size $O(n') \cdot \text{poly}(\frac{n'}{\varepsilon}) \cdot s'$, and computes f exactly. Since, it must be at least s(n) we get a lower bound on s'.

Plugging-in a small enough $\varepsilon = s^{-\Omega(1)}$ and assuming $\varepsilon < \frac{1}{n}$, we obtain:

Corollary 2. Suppose $f : \{0,1\}^n \to \{0,1\}$ is a function that no circuit of size s(n) computes in the worst case. Then, there exists an explicit function $f' = C(f) : \{0,1\}^{O(n)} \to \{0,1\}$ such that no circuit of size $s' = \sqrt{s}$ computes f' correctly on more than a $\frac{1}{2} + s^{-\Omega(1)}$ fraction of the inputs.

2 Worst-case to average case reductions for PSPACE

We next observe that if $f \in \mathsf{PSPACE}$ (as a function on an *n* bit input), and we choose *C* to be the $\mathsf{RM} \circ \mathsf{Had}$ we used in Lecture 4, then f' = C(f), viewed as a function on *n'* bits, is also in PSPACE .

Proof. View f as $f: [N = 2^n] \to \{0, 1\}$ and let $i \in \{0, 1\}^{n'} = [N']$. Denote $\mathsf{RM}: \{0, 1\}^N \to \mathbb{F}_q^{N_0}$ with $H = n, m = \frac{n}{\log n}$ and $q = \operatorname{poly}(n)$. Take $\mathsf{Had}: \{0, 1\}^{\log q} \to \{0, 1\}^q$. Then $N' = N_0 \cdot q = \operatorname{poly}(N)$, so n' = O(n). Write i as i = (a, b) where $a \in [N_0]$ and $b \in \mathbb{F}_q$, and recall that $f'(i) = \mathsf{Had}((\mathsf{RM}(f))_a)_b = \langle \mathsf{RM}(f)_a, b \rangle_2$.

It is then left to show how to compute a specific index of $\mathsf{RM}(f)$ in a space-efficient way (and using $f \in \mathsf{PSPACE}$). $\mathsf{RM}(f)$ is viewed as a multivariate polynomial $p : \mathbb{F}_q^m \to \mathbb{F}_q$ found by interpolation. We leave it as an exercise (do it!). Thus, f' is also in PSPACE .

Clearly, a similar result holds for class above PSPACE (such as E).

We can therefore deduce the following strong worst-case to average-case reduction for PSPACE:

Theorem 3. If there exists an $f = \{f_n\} \in \mathsf{PSPACE}$ such that $\mathsf{Size}(f) > s(n)$, then there exists another $f' = \{f'_{n'}\} \in \mathsf{PSPACE}$ such that $\mathsf{Size}_{\frac{1}{2}+s(n')-\Omega(1)}(f') > \sqrt{s(n)}$.