
03684155: On the P vs. BPP problem. 27/11/16 – Lecture 5b

Non-Uniformity - Some diagonalization results

Amnon Ta-Shma and Dean Doron

The results in this lecture are mostly taken from [1].

1 Preliminaries

Definition 1 (Infinitely-often). For an arbitrary complexity class C over Σ, we define

io-C =
{
L′ ⊆ {0, 1}? | ∃L ∈ C ∃ an infinite I ⊆ N ∀n ∈ I . L ∩ Σn = L′ ∩ Σn

}
2 EXP is not contained in fixed polynomial-sized circuits

Theorem 2.

• (easy) Every function f : {0, 1}n → {0, 1} can be computed by a circuit of size O(n2n).

• Every function f : {0, 1}n → {0, 1} can be computed by a circuit of size (1 + o(1))2
n

n .

• There exists a function f : {0, 1}n → {0, 1} that cannot be computed by a circuit of size
(1− o(1))2

n

n .

Proof. (1) is trivial, e.g., by CNF or DNF. For (2) see [2]. For (3) count the number of size S
circuits (about S2S) and functions (about 22

n
).

Lemma 3. Suppose s(n) is such that n ≤ s(n) ≤ 2n

4n . Then there exists some n0 such that for
every n ≥ n0, SIZE(s(n)) (SIZE(4s(n)).

Proof. Exercise. Hint: by the above, when restricting the the right number of bits.

Theorem 4. For any fixed a, EXP 6⊆ io-SIZE(na).

Proof. There are about S2S circuits of size S and we can efficiently (and brute force) enumerate

them in about S2S space and H = 2(S
2S) time. Given two size S circuits on n bits we can brute

force check whether they encode the same functionality in about 2n · S time. In particular we can
find in H22nS time the lexicographically first circuit that can be solved with 4na size and not na

size guaranteed by Lemma 3.

We define a language L as follows. Given x ∈ {0, 1}n we find the circuit Cn on n inputs described
above. Cn has size 4na and no size na circuit agrees with him on inputs of length n. We output
Cn(x). Clearly, L ∈ EXP and L 6∈ io-SIZE(na).

1

3 Diagonalizing Deterministic Time

We are all familiar with diagonalization and the time hierarchy. In words: having “more” time
enables computing more. In particular there is no fixed a such that E ⊆ DTIME(2n

a
).

We also recall the proof method. We diagonalize over all small time machines t: For every x we
simulate the x’th Turing Machine (TM) Mx for t steps and answer the opposite. The language is
in time T (assuming T time suffices to simulate t steps) but not in time t.

We now extend this argument in two ways: first we want to define a language L that differs with
every TM M in DTIME(2n

a
) on every input length large enough (and not only once). Also we allow

the small-time TM a short non-uniform advice.

Theorem 5. For every fixed a ∈ N it holds that EXP 6⊆ io-DTIME(2n
a
)/na.

Proof. Fix a. There are at most 2n TM with description size at most n that use an advice string
of size at most na. There are 2n

c
advice strings. Any TM M (with description size at most n) and

advice string adv (of size na) determine a string (or a ”truth table”) of length 2n, that in place
x ∈ {0, 1}n has the bit M(x, adv).

We define a language L as follows. On input x ∈ {0, 1}n, L does the following: If first computes a set
S of all TM with description size at most n and all advice strings of size at most na. |S| ≤ 2n · 2na

.
Then, we go over all strings w ∈ {0, 1}n in lexicographic order. For every w, for every (M,adv)
that remains in the list we simulate M(w, adv) for 2n

a
time. If the simulation does not end on

time, we delete (M,adv) from the list. If it does, we see whether it terminated with a zero or one.
For w, we choose the value that agrees with the minority vote, and we delete all those who voted
with the majority. When S becomes empty (which happens after at most nc + n steps), we choose
an arbitrary answer (say, 0) for w and all following length n strings. Finally, we look at x and let
L(x) be the value output on x in the above process.

Clearly:

• L ∈ DTIME(2O(na)) and therefore L ∈ EXP, and,

• L 6∈ io-DTIME(2n
a
)/na.

4 If NEXP ⊆ P/poly

Theorem 6. If NEXP ⊆ P/poly then there exists a constant d0 such that NTIME(2n)/n ⊆ SIZE(nd0).

Proof. We want one language U in NEXP that capture them all (i.e., all languages in NTIME(2n)).
Since U is in NEXP by our assumption it is also in P/poly, hence solvable by some fixed-polynomial
size circuit. This implies a the same fixed-polynomial size circuit for all languages in NTIME(2n)/n.

Specifically, define the following non-deterministic machine U . On input (i, x) it simulates the i’th
non-deterministic TM Mi on input x for 2n steps, and accepts on a path iff Mi accepts on that
path. Then U ∈ NTIME(2n). Hence U ∈ SIZE(nd) for some constant d.

2

Now, let L ∈ NTIME(2n)/n. Then, there is a non-deterministic TM M(x, a) running in time 2n,
and an advice sequence {an} where |an| = n such that x ∈ L ∩ {0, 1}n iff M(x, a|x|) = 1. Say

M = Mi. Then, x ∈ L iff U(i, x, a|x|) = 1. Hence, L ∈ SIZE(O(2n)d).

Corollary 7. If NEXP ⊆ P/poly then for every fixed a ∈ N it holds that EXP 6⊆ io-NTIME(2n
a
)/n.

Proof. Suppose EXP 6⊆ io-NTIME(2n
a
)/n. Since NEXP ⊆ P/poly, by the previous claim, there

exists some constant d0 such that EXP 6⊆ io-SIZE(nd0). But this contradicts Theorem 5.

References

[1] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

[2] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer Science
& Business Media, 2012.

3

