03684155: On the P vs. BPP problem.27/11/16 - Lecture 5bNon-Uniformity - Some diagonalization resultsAmnon Ta-Shma and Dean Doron

The results in this lecture are mostly taken from [1].

1 Preliminaries

Definition 1 (Infinitely-often). For an arbitrary complexity class C over Σ , we define

 $\mathsf{io-}\mathcal{C} = \{L' \subseteq \{0,1\}^{\star} \mid \exists L \in \mathcal{C} \exists an infinite \ I \subseteq \mathbb{N} \ \forall n \in I \ . \ L \cap \Sigma^n = L' \cap \Sigma^n \}$

2 EXP is not contained in fixed polynomial-sized circuits

Theorem 2.

- (easy) Every function $f: \{0,1\}^n \to \{0,1\}$ can be computed by a circuit of size $O(n2^n)$.
- Every function $f: \{0,1\}^n \to \{0,1\}$ can be computed by a circuit of size $(1+o(1))\frac{2^n}{n}$.
- There exists a function $f : \{0,1\}^n \to \{0,1\}$ that cannot be computed by a circuit of size $(1-o(1))\frac{2^n}{n}$.

Proof. (1) is trivial, e.g., by CNF or DNF. For (2) see [2]. For (3) count the number of size S circuits (about S^{2S}) and functions (about 2^{2^n}).

Lemma 3. Suppose s(n) is such that $n \leq s(n) \leq \frac{2^n}{4n}$. Then there exists some n_0 such that for every $n \geq n_0$, $SIZE(s(n)) \subsetneq SIZE(4s(n))$.

Proof. Exercise. Hint: by the above, when restricting the the right number of bits. \Box

Theorem 4. For any fixed a, $\mathsf{EXP} \not\subseteq \mathsf{io}\mathsf{-SIZE}(n^a)$.

Proof. There are about S^{2S} circuits of size S and we can efficiently (and brute force) enumerate them in about S^{2S} space and $H = 2^{(S^{2S})}$ time. Given two size S circuits on n bits we can brute force check whether they encode the same functionality in about $2^n \cdot S$ time. In particular we can find in $H^2 2^n S$ time the lexicographically first circuit that can be solved with $4n^a$ size and not n^a size guaranteed by Lemma 3.

We define a language L as follows. Given $x \in \{0,1\}^n$ we find the circuit C_n on n inputs described above. C_n has size $4n^a$ and no size n^a circuit agrees with him on inputs of length n. We output $C_n(x)$. Clearly, $L \in \mathsf{EXP}$ and $L \notin \mathsf{io-SIZE}(n^a)$.

3 Diagonalizing Deterministic Time

We are all familiar with diagonalization and the time hierarchy. In words: having "more" time enables computing more. In particular there is no fixed a such that $E \subseteq \mathsf{DTIME}(2^{n^a})$.

We also recall the proof method. We diagonalize over all small time machines t: For every x we simulate the x'th Turing Machine (TM) M_x for t steps and answer the opposite. The language is in time T (assuming T time suffices to simulate t steps) but not in time t.

We now extend this argument in two ways: first we want to define a language L that differs with every TM M in $\mathsf{DTIME}(2^{n^a})$ on every input length large enough (and not only once). Also we allow the small-time TM a short non-uniform advice.

Theorem 5. For every fixed $a \in \mathbb{N}$ it holds that $\mathsf{EXP} \not\subseteq \mathsf{io}\mathsf{-DTIME}(2^{n^a})/n^a$.

Proof. Fix a. There are at most 2^n TM with description size at most n that use an advice string of size at most n^a . There are 2^{n^c} advice strings. Any TM M (with description size at most n) and advice string adv (of size n^a) determine a string (or a "truth table") of length 2^n , that in place $x \in \{0,1\}^n$ has the bit M(x, adv).

We define a language L as follows. On input $x \in \{0,1\}^n$, L does the following: If first computes a set S of all TM with description size at most n and all advice strings of size at most n^a . $|S| \leq 2^n \cdot 2^{n^a}$. Then, we go over all strings $w \in \{0,1\}^n$ in lexicographic order. For every w, for every (M, adv) that remains in the list we simulate M(w, adv) for 2^{n^a} time. If the simulation does not end on time, we delete (M, adv) from the list. If it does, we see whether it terminated with a zero or one. For w, we choose the value that agrees with the minority vote, and we delete all those who voted with the majority. When S becomes empty (which happens after at most $n^c + n$ steps), we choose an arbitrary answer (say, 0) for w and all following length n strings. Finally, we look at x and let L(x) be the value output on x in the above process.

Clearly:

- $L \in \mathsf{DTIME}(2^{O(n^a)})$ and therefore $L \in \mathsf{EXP}$, and,
- $L \notin \text{io-DTIME}(2^{n^a})/n^a$.

4 If $NEXP \subseteq P/poly$

Theorem 6. If NEXP \subseteq P/poly then there exists a constant d_0 such that NTIME $(2^n)/n \subseteq$ SIZE (n^{d_0}) .

Proof. We want one language U in NEXP that capture them all (i.e., all languages in NTIME(2^n)). Since U is in NEXP by our assumption it is also in P/poly, hence solvable by some fixed-polynomial size circuit. This implies a the same fixed-polynomial size circuit for all languages in NTIME(2^n)/n.

Specifically, define the following non-deterministic machine U. On input (i, x) it simulates the *i*'th non-deterministic TM M_i on input x for 2^n steps, and accepts on a path iff M_i accepts on that path. Then $U \in \mathsf{NTIME}(2^n)$. Hence $U \in \mathsf{SIZE}(n^d)$ for some constant d.

Now, let $L \in \mathsf{NTIME}(2^n)/n$. Then, there is a non-deterministic TM M(x, a) running in time 2^n , and an advice sequence $\{a_n\}$ where $|a_n| = n$ such that $x \in L \cap \{0, 1\}^n$ iff $M(x, a_{|x|}) = 1$. Say $M = M_i$. Then, $x \in L$ iff $U(i, x, a_{|x|}) = 1$. Hence, $L \in \mathsf{SIZE}(O(2n)^d)$.

Corollary 7. If NEXP \subseteq P/poly then for every fixed $a \in \mathbb{N}$ it holds that EXP $\not\subseteq$ io-NTIME $(2^{n^a})/n$.

Proof. Suppose $\mathsf{EXP} \not\subseteq \mathsf{io}\mathsf{-NTIME}(2^{n^a})/n$. Since $\mathsf{NEXP} \subseteq \mathsf{P}/\mathsf{poly}$, by the previous claim, there exists some constant d_0 such that $\mathsf{EXP} \not\subseteq \mathsf{io}\mathsf{-SIZE}(n^{d_0})$. But this contradicts Theorem 5.

References

- Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness: Exponential time vs. probabilistic polynomial time. *Journal of Computer and System Sciences*, 65(4):672–694, 2002.
- [2] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer Science & Business Media, 2012.