
03684155: On the P vs. BPP problem. 11/12/16 – Lecture 8

No non-uniform lower bounds implies CSAT is extremely hard.

Amnon Ta-Shma and Dean Doron

In the previous lecture we have seen that if there are no non-uniform lower bounds (namely, if
NEXP ⊆ P/poly and PERM ∈ AP/poly) then PIT is hard (and in particular does not derandomize
completely). In this lecture we will see a result of Ryam Williams [1] showing that if there are no
non-uniform bounds (namely, NEXP ⊆ P/poly) then CSAT is extremely hard.

1 Succinct representations

Definition 1. We say a string w ∈ {0, 1}n is represented by a circuit C with log n inputs, if
C(i) = wi.

For example, if f : {0, 1}n → {0, 1} is a Boolean function then its truth table is a string Tf ∈
{0, 1}2

n

, where the entry indexed by x ∈ {0, 1}n is Tf (x) = f(x). Now, suppose C is a Boolean
circuit with n inputs computing f , then C represents the truth-table of f , because for every x,
Tf (x) = f(x) = C(x).

Similarly, we can represent formulae.

Definition 2. Suppose ϕ(x1, . . . , xn) is a 3SAT formula on n variables,

ϕ = ∧mi=1Ci(x1, . . . , xn).

We say a circuit C represents ϕ if on input i ∈ [m] Ci returns the i-th clause.

Such a representation is called succinct. Succinct representations are local in the sense that it
provides means for efficiently computing the local segments of ϕ.

The reason for the name succinct is that succinct representations might be much smaller than
“global” representations that output the whole formula ϕ. To see that consider the case where C
is a polynomial size circuit (polynomial in its input length logm) succinctly representing ϕ. Then,
any circuit “globally” representing ϕ must have m size, as it has to at least output the m output
bits representing ϕ, whereas the circuit C has size poly(logm). A simple counting argument shows
almost all formulas over n variables with m clauses are not succinct. Thus, succinct formulas form
a very special and restricted subclass of formulas.

We now define Succinct3SAT:

Definition 3. The input to the language Succinct3SAT is a circuit C succinctly representing a
3SAT formula ϕ. The input is in the language iff ϕ ∈ SAT.

Succinct3SAT is NEXP complete and with reductions that almost preserve size:

Theorem 4. Succinct3SAT is NEXP-complete (under polynomial-time reductions). Furthermore,
for every language L ∈ NTIME(2n) there is a reduction L ≤ϕ Succinct3SAT such that:

1

• For every x ∈ {0, 1}n, ϕ(x) is a circuit on ` = logm bits of size O(`4), describing a 3SAT
formula with m = cn42n clauses, where c and and d are constants depending on the language
L alone, and,

• ϕ(x) runs in poly(`) time.

The moral is that uniform computation is succinct by nature, and when we reduce to SAT on many
variables, we better remember to record this property.

We remark that a scaled down version of this also exits for NTIME(n). Also, the PCP theorem gives
a version where we end up with a gap, i.e., either C describes a satisfiable formula, or a formula
where every assignment does not satisfy a constant fraction of its clauses. A succinct version of
NTIME[n] with a constant gap and almost no expansion exists and follows from the existence of
short PCPs. We do not need this for this lecture.

2 The IKW result revisited

A few lectures ago we saw the easy witness method and the IKW result. The result was that if
NEXP ⊆ P/poly then NEXP = EXP (hence NEXP = MA). The reasoning was as follows: suppose:

• NEXP ⊆ P/poly (and therefore also EXP ⊆ P/poly and EXP = MA), but,

• NEXP 6= EXP

then there must be some language L ∈ NEXP that is solved by some non-deterministic machine
M(x, y), such that (infinitely often) there exists an input xn ∈ L that has no easy witness, i.e., a
witness that represents the truth table of an easy function.

Having that IKW prove that EXP = MA ⊆ io−NTIME(2n
a
)|n for some constant number a. The idea

is that the n bits of advice give the input xn (for infinitely often input lengths), the machine guesses
an accepting witness, and any accepting witness must represent a polynomially-hard function that
can reduce the complexity of 2n

b
of L to 2n

a
. However, we proved by diagonalization that this is

false. Hence if NEXP ⊆ MA we must have NEXP = EXP.

We now state the same argument a bit differently:

Definition 5. A verifier for a language L ∈ NTIME(t(n)) is a TM M(x, y) s.t.

• x ∈ L iff ∃y M(x, y) = 1, and,

• M(x, y) terminates in time O(t2(|x|)), and,

• |y| ≤ t(|x|).

Definition 6. A witness y ∈ {0, 1}m is d-easy if it represents the truth table of a function fy :

{0, 1}logm → {0, 1} that can be solved by a circuit (over logm bits) of size at most (logm)d.

Definition 7. A language L ∈ NTIME(t(n)) always has d-easy witnesses, if for every verifier
M(x, y), for every x ∈ L (except perhaps for finitely many) there exits a d-easy witness y such that
M(x, y) = 1.

2

In this notation we see that the IKW argument says that:

Theorem 8. Suppose NEXP ⊆ P/poly. Then for every language L ∈ EXP there exists a constant
d such that L always has d-easy witnesses.

Proof. Suppose not. Fix a language L ∈ NEXP such that for every constant d, L does not always
have d-easy witnesses, i.e., there exists a verifier V for L with (infinitely often) no d-easy witnesses.
Then, for any L2 ∈ MA we choose d large enough, and use L and V to partially derandomize L2,
giving EXP = MA ⊆ io− NTIME(2n

a
)|n and a contradiction.

3 If NEXP ⊆ P/poly then CSAT is extremely hard

We are used to measuring complexity as a function of the input size. We would like now to measure
the complexity of CSAT using a slightly refined measure. We say CSAT has complexity T (`, s) if
there exits an algorithm that given a circuit C on ` variables and size s (where size is the number
of edges in the circuit, or alternatively, the description size of C) determines whether C has a
satisfying assignment in time T (`, s).

The trivial algorithm for CSAT tries all 2` assignments and has complexity T (`, s) = 2` · poly(s).
We now show that if NEXP ⊆ P/poly then no real speedup is possible.

Theorem 9. Suppose NEXP ⊆ P/poly. Let f be any function such that f = ω(1) (i.e., f is

super-constant). Then there is no algorithm solving CSAT in time T (`, s) ≤ 2`·s
`f(`)

.

Proof. Suppose NEXP ⊆ P/poly.

Fix any L ∈ NTIME(2n). By Theorem 4 we can reduce L to Succinct3SAT with slight expansion.
I.e., given x ∈ {0, 1}n we can compute a circuit C = ϕL(x) succinctly describing a formula with
m = O(n42n) variables, where the hidden constant depends only on L. The circuit C is over
` = logm variables and has size O(`4) and ϕ(x) runs in poly(`) time. The reduction is correct, i.e.,
x ∈ L iff the 3SAT formula defined by C is satisfiable. C describes the formula.

Next we define a verifier V for L. Given x ∈ {0, 1}n it computes C = ϕ(x). Next it guesses
y ∈ {0, 1}m and takes it to be an assignment for C (which has at most n ≤ 2` = m variables). It
then goes over all the clauses Ci = C(i) the circuit C defines, and check they are all satisfied. V
runs in time O(22`). Hence V is a verifier for L. By Theorem 8 there exits a constant D such that
V always has d-easy witnesses. I.e., for every large enough n and every x ∈ {0, 1}n there exits a
circuit Ax on ` = log(m) bits, of size at most O(`d), such that the assignment y = Ax(·) satisfies
V (x, ·). A describes the assignment and notice that A is very small, Size(A) = O(`d) = O(nd).

We now define a new (and faster) algorithm M ′ for L. Given x ∈ {0, 1}n we first compute C = ϕ(x).
We then guess a circuit A of size O(nd). We define a new circuit UNSATA as follows. UNSATA

has logm variables. For every i ∈ [m] it first compute C(i) which is the i’th literal Ci in the 3SAT
formula C describes. It finds the three variables i1, i2, i3 in that literal, and computes their value
A(i1), A(i2), A(i3) in the assignment described by A. It finally checks that Ci is false under that
assignment. Therefore,

Claim 10. The assignment defined by A satisfies the sentence defined by C iff the circuit UNSATA

does not have a satisfying assignment.

3

Proof. If A satisfies C, then it satisfies every clause Ci of C, hence for all i UNSATA(i) = false,
and UNSATA is unsatisfied. Similarly, if A does not satisfy C, then for some i the clause clause Ci

is unsatisfied by A, hence UNSATA(i) = true, and UNSATA is satisfied.

Therefore,

Corollary 11. x ∈ L iff ∃AUNSATA 6∈ CSAT.

Proof. x ∈ L iff there exists a small A s.t. The assignment defined by A satisfies the sentence
defined by C, iff ∃AUNSATA 6∈ CSAT.

Therefore all we have to do to solve L is to guess A, compute the circuit UNSATA (which we can
do in time poly(`) = poly(n) which is negligible) and then solve CSAT on UNSATA. The circuit
UNSATA has ` = log(m) = log(O(2nn4)) variables and size s = O(Size(C)+Size(A)) = O(n4+nd).
Let us assume w.l.o.g. that d ≥ 4 and s = Size(UNSATA) = O(nd). Altogether, M ′ runs in
NTIME(T (`, s)).1

Now suppose CSAT can be solved in time T (`, s) = 2`s
SP(`,s) . Then T (`, s) = 2`s

SP(`,s) = O(ms
SP(`,s)) =

O(2
nn4nd

SP(`,s)). Therefore, for every f(n) = ω(1),

NTIME(2n) ⊆
⋃
d

NTIME(O(
2nn4nd

SP(`, s)
)) ⊆ NTIME(O(

2nn4nf(n)

SP(`, s)
)).

Since there is a tight non-deterministic hierarchy, we conclude that O(2
nn4nf(n)

SP(`,s)) ≥ 2n and SP(`, s) ≤
O(nf(n)). Finally, ` = logm = n+ 4 log n+O(1) so ` is about n and we can exchange n with `.

Notice that the proof also gives an explicit way of putting NEXP in Σ2. This is not surprising since
by IKW if NEXP ⊆ P/poly then NEXP = MA and NEXP = Σ2.

Also notice that we also get the assertion that if NEXP ⊆ P/poly then CSAT is extremely hard
(with the same parameters) for co-non-deterministic computation.

References

[1] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal on Computing, 42(3):1218–1244, 2013.

1We remark that even though the running time of M ′ is exponential, and has to be so, M ′ makes only poly(n)
non-deterministic guesses.

4

