
03684155: On the P vs. BPP problem. 11/12/16 – Lecture 9

An algebraic NW generator

Amnon Ta-Shma and Dean Doron

In previous lectures we saw that a uniform Boolean function hard for a non-uniform class gives
rise to a pseudo-random generator against that class. We (presenting work of [1]) now adopt the
“hardness implies pseudorandomness” approach to the arithmetic world, and show how a uniform
polynomial that is hard against a non-uniform arithmetic class (for example, if the permanent is
hard for polynomial-size arithmetic circuits) implies a HSG against low-degree, small-size arithmetic
circuits, and hence a derandomization of PIT. Thus, arithmetic circuits take the place of boolean
circuits, a hard polynomial (say, the permanent) takes the place of a hard function, and we try to
fool arithmetic circuits (or PIT) instead of trying to fool BPP.

Definition 1. Let Λ be some subset of m-variate polynomials over F. A set S ⊆ Fm is a HSG for
Λ if for all f ∈ Λ there exists s ∈ S such that f(s) 6= 0.

In this lecture we will an arithmetic version of the NW generator, converting an explicit polynomial
hard against small-size arithmetic circuits to a HSG against such circuits.

1 Finding roots of multivariate polynomials

Arithmetic circuits are the algebraic analogue of boolean circuits, and polynomials are the arith-
metic analogue of boolean functions. In the boolean world there are 22

n
boolean functions on n

bits, but only sO(s) boolean circuits of size s. Similarly, the vector space of all multi-variate poly-
nomials in n variables and total degree d has dimension

(
n+d
d

)
, which we approximate by nd, and

the number of such polynomials over a finite field is exponential in that, namely, about 2n
d
. Even

if we just look at multi-linear polynomials over F2 we have 22
n

such functions.

Thus, a multi-linear polynomial is not an efficient description of a function. In fact, we can choose
to describe a polynomial by its coefficients or by its evaluations on points in general position,
and both representations take the same number of bits, so it is correct to think of the coefficients
representation as a truth-table representation. If you find it confusing, it is because we often
work with uni-variate polynomials, and then the coefficients representation is efficient. The (few)
polynomials that have a small arithmetic circuit are the ”easy” polynomials, the same way the
(few) boolean functions that have small circuits are easy and the rest are hard.

Now, let us consider factoring multi-variate polynomials. We already used the fact that we can
factor uni-variate polynomials (for decoding RS codes) and bi-variate polynomials (for list-decoding
RS codes) in BPP. Now, we would like to factor multi-variate polynomials. Because of the discussion
before, we take the input to the problem to be a polynomial-size arithmetic circuit, representing an
”easy” multi-variate polynomial. Our goal is to factorize it efficiently, i.e., we would like to output
a small arithmetic circuit for each of its factors.

Definition 2 (Root-finding problem). Given an arithmetic circuit C(x1, . . . , xn, y) computing a
non-zero polynomial of total degree d over a field F, find a list of arithmetic circuits such that for
every polynomial p(x1, . . . , xn) satisfying C(x1, . . . , xn, p(x1, . . . , xn)) ≡ 0, there is a circuit on the
list that agrees with p over Fn.

1

But now we need to pause and ask whether this is possible at all. Namely, can it happen that an
easy multi-variate polynomial has a hard factor, or several hard factors? The remarkable answer
is: No! An easy polynomial has easy factors and these can be found efficiently. This is captured in
the remarkable:

Theorem 3. The root-finding problem for a polynomial g of total degree d computable by an
arithmetic circuit of size s can be solved probabilistically in time poly(s, d, log |F|) when F is a
finite field. For F = Q, the running time is poly(s, d, a), where a is the maximum coefficient size
of g.

The result is a corollary of Kaltofen’s randomized factorization algorithm [2], and will be central
for the algebraic version of the NW generator.

2 The NW arithmetic generator

We apply the NW generator in the arithmetic setting, replacing the hard boolean function, with a
hard arithmetic polynomial. We are given parameters m, `, a ∈ N, such that:

• p ∈ F[x1, . . . , x`],

• S1, . . . , Sm ⊆ [t] is an (`, a) design, where t = O(`
2

a).

The generator Gp : Ft → Fm is given by:

Gp(y) = p(y|S1), . . . , p(y|Sm).

We want to claim that if p is hard (i.e., requires a large arithmetic circuit) then IMAGE(Gp) is a
hitting set generator against all low-degree polynomials.

Theorem 4. Let F be a finite field, B ⊆ F. Let p ∈ F[y1, . . . , y`] be a degree dp polynomial with
SIZE(p) ≥ sp. Let d be an integer and suppose |B| > d · dp. Then NW p : Bt → Fm is a HSG for
SizeDegree(s, d) polynomials, for s = sαp −O(m · d · dp) for some constant α > 0.

Proof. Suppose not. Then exists f ∈ F[x1, . . . , xm] of degree d and size s such that f 6= 0 but
f(G(y)) = 0 for all y ∈ Ft. However, |B| > ddp ≥ deg(f ◦G) hence by Schwartz-Zippel f ◦G 6= 0
in F[y1, . . . , yt].

We define a hybrid of polynomials bridging between f and f ◦ G as follows. Let zi(y1, . . . , zt) =
p(y|Si). Then

gi(y1, . . . , yt, x1, . . . , xm) = f(z1, . . . , zi, xi+1, . . . , xm).

That is g0 = f and gm = f ◦G.

Clearly,

1. deg(gi) ≤ deg(f ◦G) ≤ dfdp.

2. g0 6= 0 but gm = 0 in F[y1, . . . , yt, x1, . . . , xm], so there must exist a smallest i such that gi 6= 0
but gi+1 = 0.

2

3. Since gi(y1, . . . , yt, x1, . . . , xm) 6= 0, by the Schwartz-Zippel lemma there is a way fix all
variables with constants from B and get a non-zero value. In particular there is a way
to fix the variables yj for j /∈ Si to some field elements so that the restricted polynomial
g̃i(yj1 , . . . , yj` , xi+1) remains non-zero. Denote this new polynomial by g(yj1 , . . . , yj` , x).

We know that g is nonzero, however g(yj1 , . . . , yj` , p(yj1 , . . . , yj`)) = 0. Therefore, by Theorem 3,

SIZE(p) ≤ poly(SIZE(g),deg(g) = ddp, log |B|).

A circuit for g can be obtained by plugging values into a circuit computing f , where the values are
either p(y|Sj) or xj′ , taking the right constant where we have a variable that was fixed. Thus, there
required size at most SIZE(f) plus m times what is needed for a computation of p on a restriction
y|Sj after setting all variables outside Si. Each such restriction has is a polynomial of degree at
most dp on at most a variables. Every such polynomial has at most M = (dp + 1)a monomials,
and so can be computed by a circuit of size poly(M). Thus, SIZE(g) ≤ SIZE(f) + mpoly(M).
Altogether,SIZE(p) ≤ (s+m(dp+ 1)d+ logB)c for some constant c. Finally, take b just larger than
ddp.

3 Algebraic hardness-randomness tradeoffs

We first define AIT , the algebraic analogue of PIT.

Definition 5 (Arithmetic circuit identity testing). Given an arithmetic circuit C computing a
polynomial p(x1, . . . , xn), decide whether p ≡ 0.

Theorem 6. We assume a uniform family of hard arithmetic functions. Specifically, let p = {p`}
be a family such hat:

• p` is a multilinear non-zero `-variate polynomials over Z.

• (uniform family) {p`(x)} can be computed in exponential time in the input length, and the
maximum coefficient size of p` over Z is at most poly(`).

• (hard function) The arithmetic circuit complexity of p over Q is sp(`) for some function sp.

Let C be an arithmetic circuit over Z[x1, . . . , xm] with:

• poly(m)-sized, and maximum coefficient size at most poly(m).

• df (m) = poly(m) degree.

Then, for all large enough m, testing wether C ≡ 0 can be done deterministically in time:

1. 2m
ε

for any constant ε > 0, if sp(`) = `ω(1).

2. 2poly(logm) if sp(`) = 2`
Ω(1)

.

3

Proof. We will only prove (1), and the proof of (2) is similar. We set ` = mε, so t ≤ m2ε. We let
B ⊆ Z of size at most dpdf < mεm = poly(m) (of, say, the smallest integers). To solve arithmetic
circuit identity testing, enumerate all elements y ∈ Bt, compute the output r = Gp`,n(y) and then
evaluate C(r). We output “C is nonzero” iff C(r) 6= 0 for some r.

For correctness, by Theorem 4, the test succeeds since otherwise sp(`) = poly(`), in contradiction
to the fact that sp(`) = `ω(1) = mω(1).

For the running time, the size of Bt is at most mO(t) < 2m
3ε

. p is computable in exponential time,
an altogether the running time of Gpt,m on Bt takes time |St|2`c < 2m

4cε
for some fixed constant c.

Choosing ε small enough the derandomization runs in SUBEXP. (We also need the assumption on
the degree and coefficient size of p`, to be able to simulate the arithmetic circuit in the Boolean
world, but we leave out the details).

The above result can be extended to the case of finite fields. The only caveat is that F may be too
small to choose a poly(m)-sized set B. However, since we test wether Cm is the identically zero
polynomial, we can work with sufficiently large extension fields. We only need O(logm)-degree
extensions of F, and such an extension can be found by brute-force in time poly(n) (in fact, there
are efficient non-brute force ways to do that, but we do not need it).

Note that unlike the boolean case, the assumption of 2`
Ω(1)

circuit complexity does not imply a
polynomial -time derandomization procedure, but only a quasi-polynomial derandomization, as we
still need to enumerate all O(logm)-tuples of field elements of bit-size O(logm) each.

We conclude with stating a weak converse of our theorem from the previous lecture, that if PERM ∈
AP/poly and NEXP ⊆ P/poly then PIT /∈ P.

Theorem 7. If either NEXP 6⊆ P/poly or PERM /∈ AP/poly, then arithmetic circuit identity testing
for size n circuits computing polynomials of degree and maximum coefficient size at most poly(n)
is in io-NTIME(2n

ε
)/nε for every constant ε > 0.

The case of PERM /∈ AP/poly follows from 6, even without the advice. The case of NEXP 6⊆ P/poly
follows from the fact that if indeed NEXP 6⊆ P/poly then coRP ⊆ io-NTIME(2n

ε
)/nε for every

constant ε > 0 – a fact we will not prove.

References

[1] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[2] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Randomness and
Computation, 5:375–412, 1989.

4

