03684155: On the P vs. BPP problem.

13/11/2016 – Lecture 3a

Local list-decoding

Amnon Ta-Shma and Dean Doron

1 Local list decoding

We extend the local (unique) decoding definition to the list-decoding setting, but we need to be careful. Consider the following "bad" definition:

Definition 1. Fix an $[n,k]_q$ code C. An algorithm R (τ,L) locally list-decodes C, if given $w \in \{0,1\}^n$ and $i \in [k]$ the algorithm R outputs a list of values S of cardinality L, such that if $agr(w,C(x)) \geq \tau n$ then $x_i \in S$.

This definition is useless. For example, if the code is binary the algorithm can output $\{0,1\}$ and always be right. The problem is that we lost the consistency between the solutions. The correct definition is:

Definition 2. Fix an $[n,k]_q$ code C. An algorithm R (τ,L) locally list-decodes C, if for every $w \in \{0,1\}^n$ and every codeword C(x) that has τ agreement with w, there exists a $j \in [L]$ such that for every $i \in [k]$ the algorithm's value is correct, namely, $R(w,j,i) = x_i$.

We are interested in situations where there are few codewords (at most L) that are δ -close to w. We require that every such codeword has a corresponding index $j \in [L]$ such that $R(w, j, \cdot)$ locally decodes it (i.e., given i, it outputs the i-th coordinate of the solution, and it runs in poly-logarithmic time). Notice also that we allow R to include garbage solutions among the L solutions – we only insist that all the good solutions appear in the list.

Again, the algorithm R may be randomized, and then we require that for every input w and codeword C(x) with $agr(w, C(x)) \ge \tau n$, there exists $j \in [L]$ such that for all $i \in [k]$, $R(w, j, i) = x_i$ with high probability over the internal random coins of R.

2 Local list decoding Reed-Muller codes – the STV construction

We fix a field \mathbb{F}_q , a subset $H \subseteq \mathbb{F}_q$ and an integer m. Let $n = q^m$ and $k = |H|^m$ and identify H^m with [k] and \mathbb{F}_q^m with [n]. Recall that to encode a string $x \in \mathbb{F}_q^k$ to a codeword $p : \mathbb{F}_q^m \to \mathbb{F}_q$ we first put x on H^m , that is $p(i) = x_i$ for every $i \in [k]$, and then extend p to be an m-variate polynomial of degree at most |H| - 1. We let deg = m(|H| - 1) be the largest possible total degree of p.

We want to show local list-decoding for the Reed-Muller code. We are given as input:

- Parameters $q, H \subseteq \mathbb{F}_q, m, \tau, L = \frac{2}{\tau}, j \in [L]$ and $a \in [k] = H^m$.
- A noisy word $f: \mathbb{F}_q^m \to \mathbb{F}_q$ (or equivalently, $f: [n] \to \mathbb{F}_q$).

The parameters are set such that for every $f \in \mathbb{F}_q^n$ there are at most L codewords having τn agreement with f. Our goal is to design a (probabilistic) reconstruction algorithm R such that for every f (a possibly corrupted codeword) and every codeword c with τ (relative) agreement with f, there exists a $j \in [L]$ such that $R(f, j, \cdot)$ locally decodes c.

2.1 A naive attempt

We first try the following:

- 1. Let ℓ be a random line that passes through $a \in [k] = H^m$. To pick ℓ you can, e.g., pick another random point $z \in \mathbb{F}_q^m$ and pass the line connecting a and z.
- 2. Compute the restriction $f \circ \ell$ of f on the line ℓ . For this we need to query f on each of the q points that lie on the line ℓ . Recall that if c is a true codeword (viewed as a low-degree multivariate polynomial $c : \mathbb{F}_q^m \to \mathbb{F}_q$) then $c \circ \ell$ is a *univariate* polynomial of degree $\deg(c) \leq \deg$.
- 3. Find all degree-deg univariate polynomials h_1, \ldots, h_L that agree with $f \circ \ell$ for at least $\tau/2$ fraction of the points, using the algorithm for list-decoding Reed-Solomon codes.
- 4. Output $h_i(a)$.

The intuition behind the algorithm is that on average the codeword c that we seek has non-negligible τ agreement with f. Therefore, it should also have about the same τ agreement with a random line passing through a (but, is it true?). If so, c will appear as one of the solutions in the list decoding of f restricted to ℓ as we wish. There are two problems with the naive approach:

- 1. The list-decoding algorithm should be worst-case with respect to a, and in such a situation we cannot prove that indeed w.h.p. over the lines passing through a, the restriction to the line has $\tau/2$ agreement with f.
- 2. We do not keep consistency. I.e., it is possible that c appears as the first solution in the list for a, but as the second solution in the list of some $a' \neq a$. In fact, the index in the set of solutions may also depend on the internal randomness (that determines the line).

2.2 A second attempt

To address the second point above, we need a *consistent* way to separate different solutions. We do that by choosing a "filtering" point $z \in \mathbb{F}_q^m$. For every $y \in \mathbb{F}_q$, we will have one solution, that will consist of those polynomials whose evaluation on z is y (and so we assume $q \gg L$). We will see that a random z is a good "splitting" filter.

We describe the algorithm $\mathcal{A}_{z,y}$. On input $f: \mathbb{F}_q^m \to \mathbb{F}_q$, $a \in H^m$, deg and τ :

- 1. Let b=z-a and let ℓ be the line a+tb for $t\in\mathbb{F}_q$. Note that $\ell(0)=a$ and $\ell(1)=z$.
- 2. Find all degree-d univariate polynomials h_1, \ldots, h_L that agree with $f \circ \ell$ on at least $\tau/2$ fraction of the points, using the list-decoding algorithm for Reed-Solomon codes $L \leq \frac{4}{\tau}$.
- 3. If there exists a unique $i \in [L]$ for which $h_i(z) = y$, output $h_i(0)$.

We now want to show that a random z splits well.

Lemma 3. Fix $\varepsilon > 0$ and assume $q \ge \frac{16(|H|m+1)}{\tau^2 \varepsilon}$. Fix $f : \mathbb{F}_q^m \to \mathbb{F}_q$. The probability over a random $z, a \in \mathbb{F}_q^m$ that $\mathcal{A}_{z,p(z)}(a)$ outputs p(a) is at least $1 - \varepsilon$. The algorithm runs in time $\operatorname{poly}(m,q)$.

Proof. The proof is similar (at least in spirit) to Theorem 5 from Lecture 1, where the main difference is that there we had little noise and we were in the unique decoding setting so we used unique decoding of Reed-Solomon, and now we have high noise, so we are in the list-decoding setting and we use list-decoding of Reed-Solomon codes.

We define two bad events. Let B_1 be the event that p and f have less than $\frac{\tau}{2}$ agreement on ℓ and let B_2 be the event that there exists a pair (i,j) such that $h_i(z) = h_j(z)$. If neither B_1 nor B_2 occur, then $\mathcal{A}_{z,p(z)}$ outputs p(a) on input a as the parameters were set to match the Reed-Solomon list-decoding algorithm. We will see this afterwards.

We shall now bound the probability for B_1 and the probability for B_2 .

Claim 4.
$$\Pr_{z,a}[B_1] \leq \frac{4}{\tau q}$$
.

Proof. ℓ is uniquely determined by a and z, so it is a random line. The points on ℓ are thus uniformly distributed and pairwise independent (why?). On any one point, the probability that f agrees with p is τ . The expected number of agreements between f and p on ℓ is then τq . By Chebyshev, the probability that we deviate by half is at most $\frac{4}{\tau q}$ (check!).

Claim 5.
$$\Pr_{z,a}[B_2] \leq \frac{8deg}{\tau^2 q}$$
.

Proof. For every $(i,j) \in [L]^2$, let $BAD_{i,j}$ be the event that $h_i(z) = h_j(z)$ (over a random a and z). First, suppose z is a random point on the line ℓ after it is fixed. Thus, the probability for $BAD_{i,j}$ is the probability over z that $(h_i - h_j)(z) = 0$, which is at most $\frac{deg}{g}$.

In fact, we can suppose this is the case. Instead of choosing z and a at random and then determining ℓ according to them, we could pick ℓ at random first and then choose a and z at random from ℓ .

So indeed $\Pr[BAD_{i,j}] \leq \frac{deg}{q}$. By the union-bound, $\Pr[B_2] \leq \frac{L^2}{2} \frac{deg}{q}$. By the list-decoding algorithm for Reed-Solomon we saw in the previous lecture, $L \leq \frac{4}{\tau}$ so $\Pr[B_2] \leq \frac{8deg}{\tau^2 q}$.

To conclude, pick q large enough so both terms will be at most $\frac{\varepsilon}{2}$, and this yields the lower bound on q.

The solution for the list-decoding of Reed-Solomon codes is given provided $\frac{\tau}{2} \ge \sqrt{\frac{2deg}{q}}$. We choose the parameters such that this requirement is met, as $q \ge \frac{8deg}{\tau^2}$.

The running time of the algorithm is poly(m, q).

As we said the running time of the algorithm is $\operatorname{poly}(m,q)$. A possible choice of parameters is that given k, ε and τ we set $|H| = \frac{\log k}{\varepsilon \tau}$, $m = \frac{\log k}{\log |H|}$ and $q = \frac{16(|H|m+1)}{\tau^2 \varepsilon}$. Thus, $q = \operatorname{poly}(|H|)$ (so the encoding length is polynomial in the input size) and $\operatorname{poly}(m,q)$ is $\operatorname{poly}(\log k, 1/\varepsilon, 1/\tau)$.

2.3 The local list decoding algorithm

In the last subsection, we showed that for a random pair (z, a), if p and f have τ -agreement then the algorithm will output p(a) with high probability. How do we obtain our list-decoding algorithm?

We set $\varepsilon = \frac{1}{16}$ in Lemma 3. We can therefore deduce that for every $f \in \mathbb{F}_q^m$ that has τ -agreement with some codeword $p : \mathbb{F}_q^m \to \mathbb{F}_q$, there exists a good splitting point $z_0 \in \mathbb{F}_q^m$ such that

$$\Pr_{a \in \mathbb{F}_q^m} [\mathcal{A}_{z_0, p(z_0)}^f(a) = p(a)] \ge 1 - \varepsilon = \frac{15}{16}.$$

We let $\mathcal{L} = [n] \times \mathbb{F}_q$. Given $j \in \mathcal{L}$ we interpret it as $(z_0, y_0) \in \mathcal{L} = [n] \times \mathbb{F}_q$. We then let R(f, j, i) for $j = (z, y) \in [\mathcal{L}]$ and $i \in [k]$ to run the local unique-decoding algorithm of Theorem 5 in Lecture 1 on the function $\mathcal{A}_{j=(z,y)}^f$. Verify that indeed R is local and that it list-decodes f (i.e., for any p with τ -agreement with f there exists a j such that $R(f, j, \cdot)$ decodes p). Overall, we obtained:

Theorem 6. For every k, τ and $q = \Omega\left(\frac{\log^2 k}{\tau^2}\right)$, the multivariate reconstruction problem above can be locally solved in time $\operatorname{poly}(q, 1/\tau)$.

Let us now unfold the algorithm. We have black-box access to a noisy $f: \mathbb{F}_q^m \to \mathbb{F}_q$ that has τ relative agreement with $p: \mathbb{F}_q^m \to \mathbb{F}_q$ of degree deg. We want to find the value of p at $a \in \mathbb{F}_q^m$.

We find at most $|\mathcal{L}| = n \cdot q$ solutions where for each $(z, y) \in \mathbb{F}_q^m \times \mathbb{F}_q$ we have one possible solution. So fix $(z_0, y_0) \in \mathbb{F}_q^m \times \mathbb{F}_q$. Here is what we do:

- We pass a random degree 3 curve through the given a.
- For each of the q points x_1, \ldots, x_q on the curve, we run \mathcal{A}_{z_0,y_0}^f and get a value. I.e., we pass the line connecting z_0 and x_i , we query all the points on the line, we run the list decoding algorithm with $\tau/2$ agreement and we filter by (z_0, y_0) . We output a value if and only if we get a unique answer.
- We run the unique-decoding algorithm on the the q points and the answers (for uni-variate polynomials of degree 2deg, deg = m(|H| 1)). We get a unique polynomial, and we output its value on the point a on the line.

3 Local List decoding concatenated codes

To transform the above code to a binary one, we concatenate it with the Hadamard code. Recall that for a string $z \in \{0,1\}^k$, the w-th coordinate of $\mathsf{Had}(z) \in \{0,1\}^{2^k}$ is $\langle z,w\rangle_2$. We saw the Hadamard code has good list-decoding properties:

Lemma 7. For every k, $\mathsf{Had}: \{0,1\}^k \to \{0,1\}^{2^k}$ is $\left(\frac{1}{2} + \varepsilon, \frac{4}{\varepsilon^2}\right)$ -list-decodable.

There is an efficient list-decoding algorithm for the Hadamard code, although for our purpose, exhaustive search in time $poly(2^k)$ will do.

Encoding To encode a string $x \in \mathbb{F}_2^k$, first compute $y = C(x) \in \mathbb{F}_q^{n_0}$. Then, encode each coordinate of y as a q-bits string using $\mathsf{Had} : \{0,1\}^{\log q} \to \{0,1\}^q$. That is,

$$C'(x) = \mathsf{Had}(y_1) \circ \ldots \circ \mathsf{Had}(y_{n_0}).$$

The encoding is of length $n = n_0 \cdot q$.

Decoding We first list-decode each symbol of the inner code and then list-decode the outer code. Given oracle access to a word $f \in \mathbb{F}_2^n$ viewed as a function $f : [n_0] \times [q] \to \{0,1\}$, assume f has $\tau \geq \frac{1}{2} + \varepsilon$ agreement with some codeword. Set $\delta = \frac{\varepsilon^3}{32}$ and let C be the $[n_0, k]_q$ code that is (δ, L_0) -list-decodable. The decoding is as follows:

- 1. For every $i \in [n_0]$, let $f_i : [q] \to \{0,1\}$ be the restriction $f_i(j) = f(i,j)$. Viewed as a word $f_i \in \{0,1\}^q$, apply list-decoding of Had for codewords of distance at most $\frac{1}{2} \frac{\varepsilon}{2}$ from f_i and obtain a list of solutions $\mathcal{H}_i \subseteq \mathbb{F}_2^{\log q}$. By Lemma 7, $|\mathcal{H}_i| \leq \frac{16}{\varepsilon^2}$.
- 2. For every $m \in \left[\frac{16}{\varepsilon^2}\right]$, let $h_m = (\mathcal{H}_1(m), \dots, \mathcal{H}_{n_0}(m)) \in \{0,1\}^{n_0}$ where $\mathcal{H}_i(m)$ is the m-th element of \mathcal{H}_i in some fixed order. Apply the list-decoding procedure of C on h_m for codewords with agreement at least δ with h_m and obtain a list \mathcal{L}_m of cardinality at most L_0 .
- 3. Output $\mathcal{L} = \bigcup_{m=1}^{16/\varepsilon^2} \mathcal{L}_i$.

We first prove the list-decoding correctness. Consider a message $x \in \mathbb{F}_2^k$ and $f \in \mathbb{F}_2^n$ such that $d(C'(x),f) \leq \frac{1}{2} - \varepsilon$ and denote $y = C(x) \in \mathbb{F}_q^{n_0}$. By definition, we have that $\Pr_{i,j}[f_i(j) = \mathsf{Had}(y_i)_j] \geq \frac{1}{2} + \varepsilon$, so by an averaging argument there exists a set $I \subseteq [n_0]$ of cardinality at least $\frac{\varepsilon}{2}n_0$ such that for every $i \in I$, $\Pr_j[f_i(j) = \mathsf{Had}(y_i)_j] \geq \frac{1}{2} + \frac{\varepsilon}{2}$.

Therefore, for every $i \in I$ there exists $m \in \left[\frac{16}{\varepsilon^2}\right]$ such that $\mathcal{H}_i(m) = y_i$. Specifically, $\Pr_{i,m}[\mathcal{H}_i(m) = y_i] \ge \frac{\varepsilon}{2} \cdot \frac{\varepsilon^2}{16} = \frac{\varepsilon^3}{32}$, so there exists $m_0 \in \left[\frac{16}{\varepsilon^2}\right]$ for which $\Pr_i[\mathcal{H}_i(m_0) = y_i] \ge \frac{\varepsilon^3}{32} = \delta$. Put differently, we have that $agr(h_{m_0}, C(x)) \ge \delta$ so the list \mathcal{L}_{m_0} includes x and we are done. The list size is at most $L_0 \cdot \frac{16}{\varepsilon^2} = \operatorname{poly}(L_0, \log(\frac{1}{\varepsilon}))$.

Another alternative is to take the whole list of $O(\frac{1}{\varepsilon^2})$ points output at each point, and input them to the RS list-decoding algorithm (that is willing to accept several choices for each point). We recommend the reader to check the details.

We now show that the running time is poly(log $k, 1/\varepsilon$). To see that, observe that the time-consuming step is $16/\varepsilon^2$ calls to list-decoding of q-ary Reed-Muller codes, as the list-decoding of the Hadamard code can be done in poly(q) time. By the previous section, the list-decoding of Reed-Muller takes poly($q, 1/\tau$) time.

We summarize the result of this lecture in the following theorem:

Theorem 8. There exists an explicit $[n, k]_2$ code that is $(\frac{1}{2} + \varepsilon, L)$ locally list-decodable where $n = \text{poly}(k, 1/\varepsilon)$ and $L = \text{poly}(n/\varepsilon)$. The (local) list-decoding procedure runs in time $\text{poly}(\log k, 1/\varepsilon)$.

The reason the list size is multiplied by n is because we go over all possible splitting points. If we are given a good splitting point (or if we choose it at random) the list size is reduced to $\operatorname{poly}(\frac{1}{\varepsilon})$.