03684155: On the P vs. BPP problem.

The easy witness method

Amnon Ta-Shma and Dean Doron

Suppose there exists a language $L \in \mathsf{NEXP} \setminus \mathsf{EXP}$. Let M(x, y) be a non-deterministic TM solving L in NEXP. We now ask the following question: Suppose someone gives us an input $x \in L$. We know that there exists a witness y such that M(x, y) = 1. How difficult it is to find such a witness y?

One thing that we can say for sure is that there exists an x (in fact, an infinite sequence of inputs) for which there is no easy witness, where a sequence of witnesses is easy if it can be described by a uniform family of polynomial size circuits. This is true, because otherwise there is always an easy witness, and therefore the procedure that checks all the easy witness will solve L in EXP, in contradiction to the fact that $L \notin \mathsf{EXP}$.

However, having that, we can use the fact that there are no easy witnesses as a hardness proof! Namely, if we are given an x for which there exists a witness y with M(x, y) = 1, while there are no easy witnesses y, then every witness y is necessarily a truth table of a function hard against polynomial size circuits. Therefore, as we saw in previous lectures, we can use it for our own good and use its hardness to construct a PRG against polynomial-sized circuits.

Said differently, we encounter a win-win scenario. Either every language in NEXP solvable by M(x, y) also has (possibly except for finitely many inputs) easy witnesses and then NEXP = EXP, or else there is an infinite sequence of inputs x_i , such that x_i has some witness and every witness y for x_i is necessarily a hard function. In such a case we have PRGs. The approach is called the "easy witness method".

Of course, things are not as easy as that. First, we have the annoying (but usually harmless) infinitely-often directive. Also, we need someone to give us the (infinitely many) inputs x_i -s that have a witness but no easy witnesses. Thus, non-uniformity enters the picture.

1 NEXP \neq EXP implies MA \subseteq io-NTIME $(2^{n^a})/n$

Theorem 1 ([1]). If NEXP \neq EXP then there exists a fixed constant a such that MA \subseteq io-NTIME $(2^{n^a})/n$.

Proof. Fix a language $A_0 \in \mathsf{NEXP} \setminus \mathsf{EXP}$. Then A_0 is decidable by a TM $A_0(x, y)$ in time $T = 2^{n^{a_0}}$, so we can also assume that $y \in \{0, 1\}^T$.

Intuitively, we would like to build another Turing Machine AE that operates like A_0 , but instead of guessing the witness y, tries all easy witnesses y that are described by a small circuit. We identify a circuit C on ℓ inputs with an assignment $\{0,1\}^{2^{\ell}}$, by letting the value of the (i_1,\ldots,i_{ℓ}) bit be $C(i_1,\ldots,i_{\ell})$. We say a witness $y \in \{0,1\}^T$ is easy, if it is represented by a small circuit of size polynomial in $\log(T)$.

We take $AE_{s(n)}$ be the TM that checks all possible *easy* witnesses. Specifically, on input $x \in \{0, 1\}^n$, $AE_{s(n)}$ goes over all Boolean circuits with n^{a_0} inputs and size at most s(n), and for each such circuit C the machine simulates $N(x, (C(0^{n^{a_0}}), \ldots, C(1^{n^{a_0}}))))$. $AE_{s(n)}$ accepts iff the simulation accepts

for some C. Note that $AE_{s(n)}$ runs in deterministic time $s^{O(s)} \cdot 2^{O(n^{a_0})}$. As $A_0 \notin \mathsf{EXP}$ we may conclude that for *every* constant c, AE_{n^c} does not solve A_0 .

If $x \notin A_0$, $AE_{n^c}(x)$ necessarily rejects x as it should. Hence for every c there exits an infinite sequence $N_c \subseteq \mathbb{N}$ and corresponding inputs $X_c = \{x_n \in \{0,1\}^n \mid n \in N_c\}$, such that for every $n \in N_a$, $x_n \in A_0$ but $AE_{n^c}(x) = 0$.

With that we prove:

Lemma 2. $MA \subseteq io-NTIME(2^{n^a})/n$.

Proof. Let $B \in MA$. Then, there exists a TM $M(x, \gamma, z)$ and a constant b such that

- If $x \in M$, there exists γ such that $\Pr_{y}[M(x, \gamma, y) = 1] \geq \frac{2}{3}$, and,
- If $x \in M$, there for all γ , $\Pr_y[M(x, \gamma, y) = 1] \leq \frac{2}{3}$.

Furthermore, $\gamma \in \{0,1\}^{n^b}$, $z \in \{0,1\}^{n^b}$ are the random coins and $M(x,\gamma,y)$ is computed in n^b time. We want to derandomize M for infinitely-many lengths of x.

Fix c = 10b. Let M' be a nondeterministic TM with advice, that on input length n gets the advice $x_n \in X_c$ (if $n \notin N_a$ the advice is arbitrary). M' does the following:

- It first guesses $y \in \{0,1\}^{2^{n^{a_0}}}$ such that $A_0(x_n, y) = 1$. We view $y \in \{0,1\}^{2^{n^{a_0}}}$ as the truth table of a function $f_y : [2^{n^{a_0}}] \to \{0,1\}$. We identify $[2^{n^{a_0}}]$ with $\{0,1\}^{n^{a_0}}$ and in this notation $f_y : \{0,1\}^{\ell=n^{a_0}} \to \{0,1\}$. Notice that we know that $Size(f_y) \ge n^c$.
- It takes the $PRG = PRG^f : \{0,1\}^{\ell^2 = n^{2a_0}} \to \{0,1\}^{n^b}$ that fools circuits of size n^b , runs in time $2^{O(\ell)}$ and works as long as $Size(f) \ge n^c$ (here we take the NM generator with constant intersection size designs).

B' then guesses a witness $\gamma \in \{0,1\}^{n^b}$ and simulates $B(x,\gamma,z)$, over all z in the image of $PRG^{f_y}(U_{\ell^2})$. It decides according to the majority vote.

It then follows that B' solves B correctly for every input of length that is in N_c . Also, B' runs in $\mathsf{NTIME}(2^{O(\ell^2)}) = \mathsf{NTIME}(2^{O(n^{2a_0})})$ and uses n bits of advice. Thus, $B \in \mathsf{io-NTIME}(2^{n^a})/n$.

2 NEXP \subseteq P/poly implies NEXP = MA

Theorem 3. NEXP \subseteq P/poly *implies* NEXP = MA.

Proof. Since $\mathsf{EXP} \subseteq \mathsf{P}/\mathsf{poly}$ we have $\mathsf{EXP} = \mathsf{MA}$. We claim that we must have $\mathsf{NEXP} = \mathsf{EXP}$. Suppose not. Then, there exists a fixed constant *a* such that $\mathsf{NEXP} \neq \mathsf{EXP}$ hence $\mathsf{EXP} = \mathsf{MA} \subseteq \mathsf{io}\mathsf{-NTIME}(2^{n^a})/n$. However this contradicts the theorem we have obtained before (using diagonalization). Hence, $\mathsf{NEXP} = \mathsf{EXP} = \mathsf{MA}$.

References

[1] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness: Exponential time vs. probabilistic polynomial time. *Journal of Computer and System Sciences*, 65(4):672–694, 2002.