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The easy witness method
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Suppose there exists a language L ∈ NEXP \ EXP. Let M(x, y) be a non-deterministic TM solving
L in NEXP. We now ask the following question: Suppose someone gives us an input x ∈ L. We
know that there exists a witness y such that M(x, y) = 1. How difficult it is to find such a witness
y?

One thing that we can say for sure is that there exists an x (in fact, an infinite sequence of inputs)
for which there is no easy witness, where a sequence of witnesses is easy if it can be described by
a uniform family of polynomial size circuits. This is true, because otherwise there is always an
easy witness, and therefore the procedure that checks all the easy witness will solve L in EXP, in
contradiction to the fact that L 6∈ EXP.

However, having that, we can use the fact that there are no easy witnesses as a hardness proof!
Namely, if we are given an x for which there exists a witness y with M(x, y) = 1, while there are
no easy witnesses y, then every witness y is necessarily a truth table of a function hard against
polynomial size circuits. Therefore, as we saw in previous lectures, we can use it for our own good
and use its hardness to construct a PRG against polynomial-sized circuits.

Said differently, we encounter a win-win scenario. Either every language in NEXP solvable by
M(x, y) also has (possibly except for finitely many inputs) easy witnesses and then NEXP = EXP,
or else there is an infinite sequence of inputs xi, such that xi has some witness and every witness
y for xi is necessarily a hard function. In such a case we have PRGs. The approach is called the
“easy witness method”.

Of course, things are not as easy as that. First, we have the annoying (but usually harmless)
infinitely-often directive. Also, we need someone to give us the (infinitely many) inputs xi-s that
have a witness but no easy witnesses. Thus, non-uniformity enters the picture.

1 NEXP 6= EXP implies MA ⊆ io-NTIME(2n
a

)/n

Theorem 1 ([1]). If NEXP 6= EXP then there exists a fixed constant a such that MA ⊆ io-NTIME(2n
a
)/n.

Proof. Fix a language A0 ∈ NEXP\EXP. Then A0 is decidable by a TM A0(x, y) in time T = 2n
a0 ,

so we can also assume that y ∈ {0, 1}T .

Intuitively, we would like to build another Turing Machine AE that operates like A0, but instead of
guessing the witness y, tries all easy witnesses y that are described by a small circuit. We identify

a circuit C on ` inputs with an assignment {0, 1}2
`

, by letting the value of the (i1, . . . , i`) bit be
C(i1, . . . , i`). We say a witness y ∈ {0, 1}T is easy, if it is represented by a small circuit of size
polynomial in log(T ).

We take AEs(n) be the TM that checks all possible easy witnesses. Specifically, on input x ∈ {0, 1}n,
AEs(n) goes over all Boolean circuits with na0 inputs and size at most s(n), and for each such circuit

C the machine simulates N(x, (C(0n
a0 ), . . . , C(1n

a0 ))). AEs(n) accepts iff the simulation accepts
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for some C. Note that AEs(n) runs in deterministic time sO(s) · 2O(na0 ). As A0 6∈ EXP we may
conclude that for every constant c, AEnc does not solve A0.

If x /∈ A0, AEnc(x) necessarily rejects x as it should. Hence for every c there exits an infinite
sequence Nc ⊆ N and corresponding inputs Xc = {xn ∈ {0, 1}n | n ∈ Nc}, such that for every
n ∈ Na, xn ∈ A0 but AEnc(x) = 0.

With that we prove:

Lemma 2. MA ⊆ io-NTIME(2n
a
)/n.

Proof. Let B ∈ MA. Then, there exists a TM M(x, γ, z) and a constant b such that

• If x ∈M , there exists γ such that Pry[M(x, γ, y) = 1] ≥ 2
3 , and,

• If x ∈M , there for all γ, Pry[M(x, γ, y) = 1] ≤ 2
3 .

Furthermore, γ ∈ {0, 1}n
b

, z ∈ {0, 1}n
b

are the random coins and M(x, γ, y) is computed in nb

time. We want to derandomize M for infinitely-many lengths of x.

Fix c = 10b. Let M ′ be a nondeterministic TM with advice, that on input length n gets the advice
xn ∈ Xc (if n 6∈ Na the advice is arbitrary). M ′ does the following:

• It first guesses y ∈ {0, 1}2
na0

such that A0(xn, y) = 1. We view y ∈ {0, 1}2
na0

as the truth
table of a function fy : [2n

a0 ]→ {0, 1}. We identify [2n
a0 ] with {0, 1}n

a0
and in this notation

fy : {0, 1}`=na0 → {0, 1}. Notice that we know that Size(fy) ≥ nc.

• It takes the PRG = PRGf : {0, 1}`
2=n2a0 → {0, 1}n

b

that fools circuits of size nb, runs in
time 2O(`) and works as long as Size(f) ≥ nc (here we take the NM generator with constant
intersection size designs).

B′ then guesses a witness γ ∈ {0, 1}n
b

and simulatesB(x, γ, z), over all z in the image of PRGfy(U`2).
It decides according to the majority vote.

It then follows that B′ solves B correctly for every input of length that is in Nc. Also, B′ runs in
NTIME(2O(`2)) = NTIME(2O(n2a0 )) and uses n bits of advice. Thus, B ∈ io-NTIME(2n

a
)/n.

2 NEXP ⊆ P/poly implies NEXP = MA

Theorem 3. NEXP ⊆ P/poly implies NEXP = MA.

Proof. Since EXP ⊆ P/poly we have EXP = MA. We claim that we must have NEXP = EXP.
Suppose not. Then, there exists a fixed constant a such that NEXP 6= EXP hence EXP = MA ⊆
io-NTIME(2n

a
)/n. However this contradicts the theorem we have obtained before (using diagonal-

ization). Hence, NEXP = EXP = MA.
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