Error Correcting Codes

Lecture Notes: Justesen Code

Lecturer: Amnon Ta-Shma, Dean Doron

Scribe: Noam Parzenchevski

1 The Goal

Recall our purpose - building a binary code with constant relative rate and distance. The Reed-Solomon code achieves our goal modulu the binary requirement. In order to fix this issue, we will use a concatenation technique where the outer coding is done via $RS[n = q - 1, k = rn, d = \delta n]_{q=2^m}$ with some constant relative weight and distance with an inner code which we now present.

2 The Inner Code

Consider the following family of codes $C_{\alpha}[2m, m]_2$ for $\alpha \in \mathbb{F}_{q=2^m}^*$: Let $\{\alpha_i\}_{i=1}^{q-1}$ be some enumeration of \mathbb{F}_q^* . For a code C_{α} given an input $x \in \{0, 1\}^m$ we consider x as an element in \mathbb{F}_q and we output $C_{\alpha}(x) = (x, \alpha x)$ where multiplication is done in \mathbb{F}_q and the representation of the output is given in binary form. We use this family of inner codes for concatenation by taking C_{α_i} as the inner code for the *i*th block of our output. Note that this technique differs from concatenation techniques we've seen before, as we use a different inner code for each block. Formally, for an input $x \in \mathbb{F}_q^k$ let p_x be the RS polynomial $p_x(\alpha) = \sum_{i=0}^{k-1} x_i \alpha^i$ and our concatenated code outputs:

$$JUS(x) = \mathcal{C}_{\alpha_1}(RS(x)_1) \circ \dots \circ \mathcal{C}_{\alpha_n}(RS(x)_n)$$

= $((p_x(\alpha_1), \alpha_1 p_x(\alpha_1)), \dots, (p_x(\alpha_n), \alpha_n p_x(\alpha_n)))$

Note: in the code we use α_i for both the *i*th coordinate of the outer RS code and the *i*th inner block coordinate, though this is not mandatory. We can pick any two enumerations of \mathbb{F}_q^* and use one in the outer code and the other in the inner code. We now want to show that for most α , \mathcal{C}_{α} achieves a constant relative distance. To show this, we fix δ_0 s.t. $2H(\delta_0) < 1$ (one can verify that any $\delta_0 \leq 0.1$ works) and perform some computations. We begin with a definition that will characterise a "bad" encoded block.

Definition 1. Fix m and let $q = 2^m$ and δ_0 as above. We call $\alpha \in \mathbb{F}_q^*$ bad if there exists $x, y \in \mathbb{F}_q^*$ s.t. $x, y \in B(\overline{0}, \delta_0 m)$ and $y = \alpha x$. Note: Each such pair x, y define a single α , as $\alpha = xy^{-1}$

Next, we show that a random α is not bad WHP:

Claim 2. For δ_0 s.t. $2H(\delta_0) < 1$ we have $\varepsilon \stackrel{\text{def}}{=} \Pr[\alpha \text{ is bad}] \leq 2^{-\Omega(m)}$

Proof As each such α is given by a unique pair x, y we can bound the probability by choosing pairs from the hamming ball $B(\overline{0}, \delta_0 m)$, thus:

$$\Pr[\alpha \text{ is bad}] = \frac{|B(\overline{0}, \delta_0 m)|^2}{q-1} \le \frac{\left(2^{H(\delta_0)m}\right)^2}{2^m - 1} \approx \frac{2^{2H(\delta_0)m}}{2^m} = 2^{(2H(\delta_0) - 1)m} = 2^{-\Omega(m)}$$

Next, we show that if α is not bad, then our inner code achieves the desired distance:

Claim 3. If α is not bad, then $wt(x, \alpha x) \geq \delta_0 m$

Justesen Code-1

Proof Assume that $wt(x, \alpha x) < \delta_0 m$, then it follows that $wt(x), wt(\alpha x) < \delta_0 m$ and therefore $x, \alpha x \in B(\overline{0}, \delta_0 m)$ which implies that α is bad by definition

Corollary 4. If α is not bad then C_{α} is a $[2m, m, \delta_0 m]_2$ code.

We note that by this corollary, if we could deterministically find such an α then we will have achieved our goal - a binary code with constant relative distance and rate. Alas, though these α 's are abundant, deterministically pointing at one is hard. By using all possible α 's in our inner coding we ensure that in most cases the inner blocks have good properties.

Corollary 5. There is at most a fraction ε of elements $y \in \mathbb{F}_q^*$ s.t. $wt(y, \alpha y) < \delta_0 m$

3 The Justesen code paramaters

All we have left is the computation of the new code parameters. Let $JUS[N, K, D]_2$ denote our new code, which has an outer $RS[n, rn, \delta n]_q$ code and inner C_{α} which is a $[2m, m, \frac{\delta_0}{2}2m]_2$ code for most blocks, and we observe:

- As each block $y_i = p_x(\alpha_i) \in \mathbb{F}_q$ is encoded by m bits and is mapped to $(y_i, y_i \alpha_i)$, clearly $N = n \cdot 2m$
- As the relative rate of C_{α} is 1/2, we have $K = \frac{r}{2}N$
- Finally, for the distance, due to the RS properties, there are at least δn blocks y_i s.t. $y_i \neq 0$. Out of these blocks, a fraction of at most $\varepsilon = 2^{-\Omega(m)}$ give an encoded block with $wt(y_i, \alpha_i y_i) < \delta_0 m$, thus:

$$D \ge (\delta - \varepsilon)n \cdot \delta_0 m = \frac{N}{2}(\delta - \varepsilon)\delta_0$$

Note that $2^{-\Omega(m)} = o(1)$ as $m \to \infty$, so we get:

$$D \geq \frac{N}{2}(\delta - o(1))\delta_0$$

And so, picking for example $\delta_0 = 0.1$ we get an $\left[N = 2nm, K = N\frac{r}{2}, D = N\frac{\delta - o(1)}{20}\right]_2$ code, with constant relative distance and rate as required

Lastly, we recall that in the outer RS code we have d = n - k + 1 and so $\delta = 1 - r + \frac{1}{n} = 1 - r + o(1)$, and so we can rewrite our code parameters as JUS $\left[N = 2nm, K = N\frac{r}{2}, D = N\frac{1 - r - o(1)}{20}\right]_2$