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The Linear-Programming Bound

Amnon Ta-Shma and Dean Doron

1 The LP-bound

We will prove the “Linear-Programming bound” due to [2, 1], which gives an upper bound on the
code rate of a given distance. The bound’s name hints the proof technique, however we will see
a different proof which doesn’t rely on linear programming, due to Navon and Samorodnitsky [3].
The linear-programming bound beats the Elias-Bassalygo bound when the relative distance is not
too small.

Before we proceed, consider the notion of a maximal eigenvalue restricted to a specific subset of
indices.

Definition 1. Let A € C™*™ and B C [m]. Define

Ap(A) = max vl Av.
vi[[vf|=1,supp(v)CB

Throughout, we consider A as the binary adjacency matrix of the Hamming cube of dimension
n. That is, the rows and column are indexed by {0,1}" and Alz,y] = 1 iff A(z,y) = 1 (as n-bit
strings). Make sure you understand why Afo,1yn = n.

We abbreviate A\ = Ap(A), and note that we can think of every such v € R?" as a function
v:{0,1}" = R.

The way we establish an upper bound on the code’s cardinality is by first proving a lower bound
on Ap where B is a Hamming ball and then arguing that if a large enough B has a large maximal
eigenvalue (w.r.t. the code’s distance) then it must be the case that the code’s cardinality is not
too large.

2 The Fourier Transform

We will only consider Fourier expansion over the Boolean cube. Let V = {f : F§ — R} and note
that it is a vector space on I} over R of dimension 2". A natural basis for V is

L) { 1, r=w

0, otherwise

for every w € F3. It is also an inner-product space under the inner product

(o f) = E [h@h@)] = 5 3 h@) )

zeFY
2 zeG

and it is easy to see that the basis {lw}wng is an orthogonal basis under this inner product.

We now introduce another basis, that contains only functions that are homomorphisms.



Definition 2. A character of the finite group G is a homomorphism x : G — C*, i.e., x(v +y) =
x(x)x(y) for every x,y € G, where the addition is the group operation in G, and the multiplication
is the group operation in C*.

In our case, G = Fy and we have an explicit representation of the characters. For S € FZ, define
xs €V as

xs@) = (=1,

Verify that every character is a homomorphism. Now,

Claim 3. The set of all characters of FY is orthonormal (under the above inner product).
Proof. First, (xs,Xs) = 3= 2., Xs(z)xs(z) = 52" = 1. Now, for S # T,

1
(x5, x1) 2nZXS IXr(2) = o Y _(~1EFH

T

As S # T, S+ T is nonzero, say at indices I C [n]. Exactly half of the z-s have odd weight
restricted to I and exactly half have even weight. Thus, the above sum is 0. O

The Fourier transform of a function is the linear transformation from V' to V' that maps the natural
basis to the Fourier basis (of characters). Thus, every f € V' can be (uniquely) written as

> F(8) - xs,
S

and the coefficients f (S) are called the Fourier coefficients.

We give their basic properties:

Claim 4. Let f,g € V. We have:

F(S) = (f.xs)-
2. (f,9) =Yg f(8)§(S) (Parseval’s identity).
3. f(0) =E[f].

Proof. For item (1),

(f,xs) <Z )XT, X > =Y F(T){xs, xr) = F(S)(xs,xs) = f(S).
T

For item (2),

For item (3),



We now define a convolution between two functions.

Definition 5. Let f,g € V. The convolution f* g €V is defined as (f * g)(xz) =E, f(y)g(xz +y).

Verify that the convolution operator is commutative and associative. Also, a key property is the
following one:

Claim 6. fxg=f-§.

Proof. Fix S C IFy. We have:

f(S)-9(8) = (f.xs){g:xs) = 22”22f (@)xs(y)
= 22n22f y)xs(z +y) = 22%2210 9(z + z)xs()
1 _

= S0 xs() = (Frgs) = FralS)

z

2.1 Fourier transform and codes

For C' C F%, we let 1¢ be the characteristic function of C, in the sense that 1¢(z) = 1if x € C and
0 otherwise. We record a few easy claims.

Claim 7. Let C be a linear code. Then, f(\; = ‘2%‘ 1o

Proof. For every S € F3, 10(S) = (1o, x8) = 5= 3oy Lo() - (1)@ = L 57 (=1)@®%). Now, if
S € C* then all inner products are 0 and we get \;l'

Otherwise, there exists ¢y € C such that (co,S) = 1. For every x € C' it holds that (—1)@5) +
(—1){zte0S) = (—1)@5) (1 4 (=1){05)) = 0. Summing it over all z € C, we get:

0= Z ((_1)<m,5)(1 + (_1)<z+co,5))) — Z(_1)<x,5) + Z(_l)(:erco,S) -9 Z(_1)< S
zeC zeC zeC zeC

as required. O

Claim 8. Let C be a linear code. Then, 1o * 1o = % -1¢.

Proof. For every x € F}, (1o x1¢)(z) = 5= >, lelo(z+y) = = > yec le(z+y). Now, ifz € C

el Otherwise, x +y ¢ C and the sum is 0. O

then z 4+ y € C and the sum is |2n

Let e; € Fy be the vector (ai,...,a,) with a; = 6; ;. Let L : F§ — R defined by L(e;) = 2" for
every 1 < ¢ < n, and 0 elsewhere.

Claim 9. For every f € V it holds that Af = L x f. Consequently, (Af)(z) = Zie[n] flx+e).



Proof. Follows easily by (f * L)(z) = o >y LW f(z+y) = > f(z + e;) and inspecting the
neighbors of x in the Hamming cube. O

Claim 10. For every S € F}, L(S) = n —2-w(S).

Proof. L(S) = (L, xs) = gt 2, L(x) - (=1)"5) = 30,1 (=1)% = (n — w(5S)) — w(S). O
Finally, we give one last example:

Claim 11. Let B = B(0,7n) and C CF} a code. Then, (1c * 15)(z) = |C N B(z,mn)|/2".

Proof. For every z € Fy,

(lc * 13)(2’) = 2% Z 1C(x)1B($ + Z) = 2% Z 1B(z,Tn)(x)'

zeC

3 The approach

We say f > g if f(x) > g(z) for every z € F5.
Lemma 12. Let B = B(0,7 = 7n) be the Hamming ball of radius r. Then there exists a function

f €V with the following properties:

o f is supported on B,
e [ 20,
o Af > \.f for \p =24/r(n—r) —o(n) =2n(\/7(1 —7) —o(1)).

Definition 13. We say C' C F% has dual distance d if the Fourier transform of 1¢/ vanishes on
points of Hamming weight 0 < |S| < d.

Claim 14. If C' C F} is a linear code with dual distance d then d is also the minimal distance of
C+.

Proof. We want to show that 1,1 (z) = 0 for x with 0 < w(z) < d. As C is linear, 1,1 = %1/(\;,
and by definition 1¢(x) vanishes on such z-s. O

Lemma 15. Suppose C' C FY is a vector space with dual distance d (i.e., it’s dual code has distance
at least d). Let B = B, for an integer r such that \, > n —2d+ 1. Then,

U(Z"‘Br) > %

zeC’




Let 6 =d/n < 1, Take 7 = £ — \/6(1 — 0) + o(1) and r = 7n. So,

A o= 2 <\/<; =5 + 0(1)) (; /503 + 0(1)> - 0(1)>
~ o <\/52 64 +o1) - 0(1)> _ o (; 18— D11 +0(1)>

1
= 2n<2(1—25)+0(1)> =n—2d+o0,(1) > n—2d+1,

and the premise of Lemma 15 is satisfied by choosing the o(1) terms both in A, and in 7 appropri-
ately. From now on, that is the r we should think of.

Now take C’ = C*. Then, balls of radius r centered at the points of the dual code cover an

%—fraction of the space. Then,

2’!’1

CL|-|B,| = |Ct].2nH(M)+o() >
n

and so we obtain:
Corollary 16. Let C be a [n,k,d]s code and 6 = d/n is the relative distance. Then:
|CJ_| > 2(17H(T)70(1))n

and therefore

on
Cl = < 2(H(T)+0(1))n

where 7 =3 — \/5(1 —6).

Asymptotically, this gives R(§) < H(3 — \/6(1—0)). We are left with proving Lemma 12 and
Lemma 15.

3.1 Proving a lower bound on the Dirichlet eigenvalue of a ball in F}

Lemma 17. Let B = B(0,7 = 7n) be the Hamming ball of radius r. Then there exists a function
f €V with the following properties:

e f is supported on B,
o f>0,
o (Af, f) = Alf, f) for Ar =2¢/r(n—7) —o(n) = 2n(\/7(1 — 7) — o(1)).

Proof. We construct a specific “eigenfunction” f that achieves the bound. f will be symmetric, so
it is fully defined by its values on n + 1 vectors of distinct Hamming weights. We overload notation
and write f(i) for the value gives on weight ¢ vectors. We choose f such that f gives the same
weight for each level on its support. Let M = \/n = o(n). Define f as follows:

1n i€[r—M,r],
f) = (%)

0 otherwise.




Now we need to compute (Af)(v) =37, f(v+ ;). Notice that Af is also symmetric and

Af(i) =if(i—1)+ (n—1)f(i +1).

O (7;-7:1)_ fn—i
f(z‘+1)_\/ ™ Vi+1
Thus, fori e [r— M +1,r — 1],

Af(i) = iln = i) f(i) + v/ (n—i)(i + 1) f ().

Also, if i € [r — M,r — 1],

Hence,

fraf

v

r—1
> <Z> (Vh(n =k + 1)+ /(n = k) (k + 1)) f (k)
k=r—M+1

r—1
= > VEn-k+1)+/(n—-k)(k+1).
k=r—M+1

As

\/k(n—k+1),\/(n—k)(k+1) > \/(T—M)(n—r)z\/r(n—r)—M,

we get that
fTAf > 2M —1)(\/r(n—r) = M) = 2\/r(n—r)—o(n),

whereas f1f <1, completing the proof. O
Having that we prove Lemma 12

Proof. A is a symmetric, irreducible (i.e., the corresponding graph is connected) operator with
non-negative entries. Let A’ be its restriction to B (one can view it as either restricting the matrix
A to the B x B sub-rectangle, or as the operator IlIgAllg where Ilp is projection on B). A’
is also symmetric, irreducible and with non-negative entries. By the Perron-Frobenius theorem
the greatest eigenvalue of A’ is obtained by a non-negative vector f’ > 0 supported on B. Say
A/f/ — A/f/'

We have already seen an f supported on B such that ffTT—Aff > \,. However, fTAf = fTHJfBAHB f=
fTA’f and N is the largest singular value of A’, hence we must have X > \,.. Also Af' > A'f’
because A — A’ > 0 and f’ > 0, hence we have

AflelfIZ)\lflef/,

as desired. O



3.2 The covering bound

Proof. Let B = B, and f be the function guaranteed by Lemma 12 for B. Define
F = 1C’ * f

Le., for z € IF5:

FE) = gr Y lo@f@t) =0 3 fletw).

z€Fy welC’
Hence, F' is supported on |J,,ccv(w + B). We will bound (AF, F') from both sides.
One side: By definition,
AF = Fx L = (1cl*f)*L:10/*(f*L> :1C/*Af
As 10/ > 0 and Af > )\Bf we have AF = lC’ * Af > ABlC/ * f = ABF ThllS7
Other side: It holds that

But F(S) = 13*\]”(5) = 1(8)f(S), and C’ has dual distance d, so we get zero for every
set S of cardinality between 1 and d — 1. Hence,

(AF,F) = L(

IA
S
:g>
=
e
+
0 ¢
S
|
[\}
&
jj\)
)
e

Together we get that
(n—2d+1)(F,F) < A\g(F,F) < (AF,F) < nE[F]? + (n — 2d)(F, F)

Thus,
(F,F) < nE[F]?.

But, F' is supported on A = J,,cc(w + B), and by Cauchy-Schwartz,

2

n|A|

on > a8 desired. OJ

Hence 1 <
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