Polynomial Codes and Cyclic Codes

Amnon Ta-Shma and Dean Doron

1 Polynomial Codes

Fix a finite field \mathbb{F}_q . For the purpose of constructing polynomial codes, we identify a word of n elements $c = (c_0, \ldots, c_{n-1})$ with its representing polynomial $c(x) = \sum_{i=0}^{n-1} c_i x^i$.

Definition 1. Fix some integer n and let g(x) be some fixed polynomial of degree $m \le n-1$. The polynomial code generated by g(x) is the code whose codewords are the polynomials of degree less than n that are divisible (without remainder) by g(x).

As an example, take \mathbb{F}_2 , n = 5 and $g(x) = x^2 + x + 1$. The code consists of the 8 codewords $0 \cdot g(x), \ldots, (x^2 + x + 1) \cdot g(x)$. Equivalently, we can identify every polynomial with its vector of coefficients to get a codeword in \mathbb{F}_2^n .

Verify that a polynomial code is linear and has dimension k = n - m. Also, check that if $g(x) = \sum_{i=0}^{n-k} g_i x^i$ is the generator polynomial, then an $n \times k$ generating matrix for the code is given by

$$G = \begin{pmatrix} g_0 & g_1 & \cdots & g_{n-k} & & \\ & g_0 & g_1 & \cdots & g_{n-k} & \\ & & \ddots & \ddots & & \ddots & \\ & & & g_0 & g_1 & \cdots & g_{n-k} \end{pmatrix}^T$$

1.1 An example: Reed-Solomon code

To show that Reed-Solomon codes are polynomial codes we need to prove that every Reed-Solomon code is generated by some polynomial. Fix a field \mathbb{F}_q with a generator α and n = q - 1 and throughout this subsection, let \mathcal{C} be a $[n, k, n - k + 1]_q$ Reed-Solomon code.

First, we prove:

Lemma 2. Let $c = (c_0, \ldots, c_{n-1}) \in \mathbb{F}_q^n$ and c(x) be its representing polynomial. Then, $c \in C$ if and only if $c(\alpha^t) = 0$ for every $1 \le t \le n-k$.

Proof. Let H be the $n \times (n - k)$ matrix we defined before, $H_{i,j} = \alpha^{ij}$ for $0 \le i \le n - 1$ and $1 \le j \le n - k$. We saw that $H^t G = 0$ and therefore H is the parity check matrix of the code. Thus, for $c = (c_0, \ldots, c_{n-1}) \in \mathbb{F}_q^n$, $c \in \mathcal{C}$ iff Hc = 0. However, almost be definition, Hc = 0 iff $c(\alpha^t) = 0$ for $1 \le t \le n - k$. The claim follows.

Theorem 3. The Reed-Solomon code is a polynomial code.

Proof. Let $g(x) = \prod_{t=1}^{n-k} (x - \alpha^t)$. The above lemma readily implies that $c(x) \in \mathcal{C}$ if and only if g(x) divides c(x).

2 Cyclic Codes

Definition 4. A code C is cyclic if every cyclic shift of a codeword in C is also a codeword. That is, $(c_0, c_1, \ldots, c_{n-1}) \in C$ implies that $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$.

In the notation of representing polynomials, a code C is cyclic if and only if $c(x) \in C$ implies

$$x \cdot c(x) \mod (x^n - 1) \in \mathcal{C}.$$

If a code is linear, then equivalently we can say that $c(x) \in \mathcal{C}$ implies

$$u(x) \cdot c(x) \mod (x^n - 1) \in \mathcal{C}$$

for every $u \in \mathbb{F}_q[x]$. Hence, \mathcal{C} is a linear cyclic code if and only if \mathcal{C} is an ideal in the ring $\mathbb{F}_q[x]/(x^n-1)$.

2.1 An example: Reed-Solomon code

We begin with an example – the $[n, k, n - k + 1]_q$ Reed Solomon code. Define

$$g(x) = \prod_{t=1}^{n-k} (x - \alpha^t)$$

We saw $c \in \mathcal{C}$ iff $g \mid c$.

Now suppose $c \in \mathcal{C}$. Let $b = xc \pmod{x^n - 1}$. Hence $b = xc + D(x)(x^n - 1)$. However,

$$g(x) = \prod_{t=1}^{n-k} (x - \alpha^t) \mid \prod_{t=1}^n (x - \alpha^t) = x^{q-1} - 1 = x^n - 1.$$

Thus, $g \mid xc$ and $g \mid x^n - 1$ and therefore $g \mid b$. Hence $b \in C$.

The proof also shows why taking modulo $x^n - 1$ makes sense. This is because for all the evaluation points α we have $\alpha^n - 1 = 0$, thus from the code point of view we can assume $x^n - 1 = 0$.

2.2 Every cyclic Code is a polynomial code

Theorem 5. Let C be a cyclic code over \mathbb{F}_q and g the monic polynomial in C of minimal positive degree (prove that it is unique!). Then g generates C, i.e., $c \in C$ iff $g \mid c$.

Proof. Suppose there exists $b \in C$ such that $g \nmid b$, g, b are polynomials of degree at most n-1. Now let c = gcd(g, b). As $\mathbb{F}_q[x]$ is an Euclidean ring, there exist $u, v \in \mathbb{F}_q[x]$ such that

$$c = gu + bv,$$

and therefore also

$$c = gu + bv \mod (x^n - 1)$$

As C is ideal, $b = b \mod (x^n - 1) \in C$. However, since $g \nmid b$, $\deg(c) < \deg(g)$. Also $b \neq 0$. But this is a contradiction to g having the minimal positive degree in C.

2.3 Cyclic codes are special polynomial codes

In fact, we can state something stronger and exactly characterize the generators of cyclic codes.

Theorem 6. A polynomial code is cyclic if and only if its generator polynomial divides $x^n - 1$.

Proof. Assume C is a cyclic [n, k] code over \mathbb{F}_q . Let g(x) be the generator polynomial of C. We know g is the minimal degree non-zero monic polynomial in C. Write $x^n - 1 = h(x)g(x) + r(x)$ where $\deg(r) < \deg(g)$. We have that

$$r(x) = -h(x)g(x) \mod (x^n - 1),$$

so $r(x) \in \mathcal{C}$. This means that r(x) = 0, since no other codeword in \mathcal{C} can have degree smaller than $\deg(g)$.

For the other direction, let C be an [n, k] polynomial code generated by some g(x) and suppose $g \mid x^n - 1$, i.e.,

$$x^n - 1 = gh$$

for some $h \in \mathbb{F}_q[x]$. Let $c \in \mathcal{C}$. We will prove that $xc \mod (x^n - 1) \in \mathcal{C}$ and therefore \mathcal{C} is cyclic. c has degree at most n - 1. Also c = gu for some $u \in \mathbb{F}_q[x]$. Hence

$$xc \mod (x^n - 1) = g \cdot (xu \mod h),$$

and therefore $xc \mod (x^n - 1) \in \mathcal{C}$ because \mathcal{C} is polynomial.

Now, we can reprove what we already saw:

Corollary 7. The Reed-Solomon code is cyclic.

Proof. The corollary follows from the fact that $x^n - 1 = \prod_{k=1}^n (x - \alpha^i)$ and the fact that the generating polynomial is $g(x) = \prod_{i=1}^{n-k} (x - \alpha^i)$.

2.4 Dual Codes of Cyclic Codes

Let C be an [n, k] cyclic code with a generator $g(x) = \sum_{i=0}^{n-k} g_i x^i$. We know that $g \mod x^n - 1$ and therefore there exists $h(x) = \sum_{i=0}^k h_i x^i$ such that $gh = x^n - 1$.

Let $c \in \mathcal{C}$. As g generates \mathcal{C} we have c = ga for some $a \in \mathbb{F}_q[x]$. Therefore

$$hc \mod (x^n - 1) = hga \mod (x^n - 1) = 0.$$

This translates to the n constraints:

$$c_0h_i + c_1h_{i-1} + \ldots + c_{n-k}h_{i-n+k} = 0$$

for every $0 \le i \le n-1$, where the indices are modulo n. It follows that

is a $(n-k) \times n$ matrix of parity checks of C, and because it has the correct rank n-k it is a parity check matrix of C.

Looking at the generator matrix of a polynomial code we see that:

Theorem 8. Let C be an [n,k] cyclic code generated by g(x) and let $h(x) = \frac{x^n-1}{g(x)}$. Then, the dual code of C is a cyclic [n, n-k] code whose generator polynomial is $x^k h(x^{-1})$. The polynomial h(x) is called the check polynomial of C.

Proof. Clearly, the dual code of C is generated by the polynomial $\sum_{j=0}^{k} h_{k-j} x^{j}$. The only thing remaining is to note that

$$\sum_{j=0}^{k} h_{k-j} x^{j} = \sum_{j=0}^{k} h_{j} x^{k-j} = x^{k} h(x^{-1}).$$

3 The Hamming code is cyclic

Any binary Hamming code is equivalent to a cyclic code.

Theorem 9. Fix a field \mathbb{F}_{2^r} and let $n = 2^r - 1$. Then, there exists a $[n, k = n - r, 3]_2$ cyclic code. Since the only code with such length, dimension and distance is the Hamming code, the Hamming code is cyclic.

Proof. Let α be a generator of $\mathbb{F}_{2^r}^*$. Let g be the minimal polynomial of α over \mathbb{F}_q . Then $g \mid x^n - 1$ because $\alpha^n - 1 = 0$. Also, g is irreducible and $\deg(g) \leq r$. As α generates $\mathbb{F}_{2^r}^*$ we must have $\deg(g) = r$. The code \mathcal{C} generated by g is therefore a cyclic $[n, n-r]_2$ code. The minimal polynomial g vanishes on α and all its conjugates, so $g(x) = \prod_{i=0}^{m-1} (x - \alpha^i)$ (and this also determines what is h such that $gh = x^n - 1$).

The code C can be described as all elements $c = (c_0, \ldots, c_{n-1}) \in \mathbb{F}_2^r$ such that $c(\alpha) = 0$, or equivalently, that $H^t(c) = 0$ where

$$H^T = \begin{pmatrix} v_0 & v_1 & \cdots & v_{n-1} \end{pmatrix}$$

$$\tag{2}$$

where v_i is a column vector representing α^i in \mathbb{F}_2^r , with some fixed basis of F_{2^r} as an r dimensional vector space over \mathbb{F}_2 . Notice that it is also true that $c(\alpha^{2^i}) = 0$ for any i, but these equations are redundant, because they are implied from the equation $c(\alpha) = 0$.

Now, what is the distance of C? Check that no two columns of H^t are dependent (otherwise, $\alpha^i = b\alpha^j$, for $i \neq j$ and $b \in \mathbb{F}_2$, and that is wrong (why?). Hence the distance of C is at least 3. As the Hamming code is perfect it is exactly 3.

An *automorphisim* of a [n, k] code C is a permutation π on the set of n coordinates that preserves the code. For example, cyclic codes are preserved by permutations that map i to $i + k \mod n$. Automorphisims are closed under composition and inverse and therefore give rise to an *automorphim* group of the code. For example, if we take the $[n = 2^r - 1, k = n - r]_2$ Hamming code and index the coordinates by $\mathbb{F}_n^* = \{\alpha^i\}$ in the natural order, then the permutation $x \to \alpha x$ is an automorphism (corresponding to a cyclic shift), and also the Frobenius mapping $x \to x^2$ (again, applied on the coordinates) is an automorphism (check!).

References

[1] Ron Roth. Introduction to coding theory. Cambridge University Press, 2006.