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Polynomial Codes and Cyclic Codes

Amnon Ta-Shma and Dean Doron

1 Polynomial Codes

Fix a finite field F,;. For the purpose of constructing polynomial codes, we identify a word of n
n—1

elements ¢ = (cg, ..., ¢,—1) with its representing polynomial c(z) = Y"1 c;a’.

Definition 1. Fiz some integer n and let g(x) be some fixed polynomial of degree m < n —1. The
polynomial code generated by g(x) is the code whose codewords are the polynomials of degree less
than n that are divisible (without remainder) by g(x).

As an example, take Fo, n = 5 and g(z) = 22 + 2 + 1. The code consists of the 8 codewords
0-g(x),...,(®>+ 2 +1)-g(x). Equivalently, we can identify every polynomial with its vector of
coefficients to get a codeword in 7.

Verify that a polynomial code is linear and has dimension k = n — m. Also, check that if g(z) =
Z?;ok g;x" is the generator polynomial, then an n x k generating matrix for the code is given by

T
go 91 - Gn—k

go g1 In—k
g0 g1 o On—k

1.1 An example: Reed-Solomon code

To show that Reed-Solomon codes are polynomial codes we need to prove that every Reed-Solomon
code is generated by some polynomial. Fix a field F, with a generator  and n = ¢ — 1 and
throughout this subsection, let C be a [n, k,n — k + 1], Reed-Solomon code.

First, we prove:

Lemma 2. Let c = (co,...,cn-1) € Fy and c(x) be its representing polynomial. Then, c¢ € C if and
only if c(al) =0 for every 1 <t <n —k.

Proof. Let H be the n x (n — k) matrix we defined before, H; ; = o for 0 < i < n — 1 and
1< j <n—k. Wesaw that H'G = 0 and therefore H is the parity check matrix of the code. Thus,
for ¢ = (co,...,cn-1) € Fy, c € C iff He = 0. However, almost be definition, He = 0 iff c(at) =0
for 1 <t <n —k. The claim follows. O

Theorem 3. The Reed-Solomon code is a polynomial code.

Proof. Let g(x) = ?:_1k(a: —at). The above lemma readily implies that ¢(z) € C if and only if g(x)
divides ¢(x). O



2 Cyclic Codes

Definition 4. A code C is cyclic if every cyclic shift of a codeword in C is also a codeword. That
is, (co,C1,- .. cn—1) € C implies that (ch—1,¢0,...,¢cn—2) €C.

In the notation of representing polynomials, a code C is cyclic if and only if ¢(x) € C implies
x-c(x) mod (2" — 1) € C.
If a code is linear, then equivalently we can say that c¢(x) € C implies
u(z) - e(x) mod (z" —1) € C
for every u € Fylz]. Hence, C is a linear cyclic code if and only if C is an ideal in the ring
Fylz]/(a" = 1).
2.1 An example: Reed-Solomon code
We begin with an example — the [n,k,n — k + 1]; Reed Solomon code. Define
g(@) = G (z — o).

We saw c € C iff g | c.
Now suppose ¢ € C. Let b = zc(mod z™ — 1). Hence b = xz¢ + D(x)(z™ — 1). However,

gla) = f(x — o) | My (r —al) =27 — 1 =" — 1.

Thus, g | zc and ¢ | 2™ — 1 and therefore g | b. Hence b € C.

The proof also shows why taking modulo " — 1 makes sense. This is because for all the evaluation
points a we have o™ — 1 = 0, thus from the code point of view we can assume z" — 1 = 0.

2.2 Every cyclic Code is a polynomial code

Theorem 5. Let C be a cyclic code over F, and g the monic polynomial in C of minimal positive
degree (prove that it is unique!). Then g generates C, i.e., c€ C iff g | c.

Proof. Suppose there exists b € C such that g 1 b, g, b are polynomials of degree at most n — 1. Now
let ¢ = ged(g,b). As Fg[z] is an Euclidean ring, there exist u,v € Fy[z] such that

c = gu + b,

and therefore also
¢=gu+bvmod (" —1).

As C is ideal, b = b mod (2" — 1) € C. However, since ¢ 1 b, deg(c) < deg(g). Also b # 0. But this
is a contradiction to ¢ having the minimal positive degree in C. O



2.3 Cyclic codes are special polynomial codes

In fact, we can state something stronger and exactly characterize the generators of cyclic codes.
Theorem 6. A polynomial code is cyclic if and only if its generator polynomial divides x™ — 1.
Proof. Assume C is a cyclic [n, k] code over F,. Let g(x) be the generator polynomial of C. We

know ¢ is the minimal degree non-zero monic polynomial in C. Write 2™ — 1 = h(x)g(x) + r(z)
where deg(r) < deg(g). We have that

r(z) = —h(z)g(x) mod (2" — 1),

so r(x) € C. This means that r(z) = 0, since no other codeword in C can have degree smaller than
deg(g)-

For the other direction, let C be an [n, k] polynomial code generated by some g(z) and suppose
g|z™—1, ie.,
" — 1= gh,

for some h € Fy[z]. Let ¢ € C. We will prove that zc¢ mod (2" — 1) € C and therefore C is cyclic.

¢ has degree at most n — 1. Also ¢ = gu for some u € Fy[z]. Hence
xze mod (2" — 1) = g - (xu mod h),

and therefore zc mod (2™ — 1) € C because C is polynomial. O

Now, we can reprove what we already saw:

Corollary 7. The Reed-Solomon code is cyclic.

Proof. The corollary follows from the fact that 2" — 1 = [[}_;(z — o) and the fact that the

generating polynomial is g(z) = H?;lk(:c —ab). O

2.4 Dual Codes of Cyclic Codes

Let C be an [n, k] cyclic code with a generator g(x) = Z?;Ok giz'. We know that g mod 2" — 1 and
therefore there exists h(x) = Zf:o h;x' such that gh = 2™ — 1.

Let ¢ € C. As g generates C we have ¢ = ga for some a € Fy[z]. Therefore
he mod (2" — 1) = hga mod (2" — 1) = 0.
This translates to the n constraints:
cohi +cihi—1+ ...+ cp—khi—nir = 0,

for every 0 < ¢ < n — 1, where the indices are modulo n. It follows that

hg hgp—1 - ho
hi  hg—1 -+ ho

hi hr—1 -+ ho



is a (n — k) x n matrix of parity checks of C, and because it has the correct rank n — k it is a parity
check matrix of C.

Looking at the generator matrix of a polynomial code we see that:

Theorem 8. Let C be an [n, k] cyclic code generated by g(z) and let h(z) = xgn(;)l. Then, the dual
code of C is a cyclic [n,n — k| code whose generator polynomial is x*h(z~'). The polynomial h(x)

is called the check polynomial of C.

Proof. Clearly, the dual code of C is generated by the polynomial Z?:o hk,ja:j. The only thing
remaining is to note that

k k
Z hj—jz? = Zhjxk_j = zFh(z™t).
=0 =0

3 The Hamming code is cyclic

Any binary Hamming code is equivalent to a cyclic code.

Theorem 9. Fix a field For and let n = 2" — 1. Then, there exists a [n,k =n —r, 3]s cyclic code.
Since the only code with such length, dimension and distance is the Hamming code, the Hamming
code is cyclic.

Proof. Let a be a generator of F5,. Let g be the minimal polynomial of « over F,. Then g | 2™ —1
because @™ — 1 = 0. Also, g is irreducible and deg(g) < r. As « generates F}. we must have
deg(g) = r. The code C generated by g is therefore a cyclic [n,n—r]s code. The minimal polynomial
g vanishes on o and all its conjugates, so g(z) = II/" ;' (z — o’) (and this also determines what is h
such that gh = 2™ —1).

The code C can be described as all elements ¢ = (cp,...,cn—1) € F5 such that c(a) = 0, or
equivalently, that H'(c) = 0 where

HT = (1)0 v o Un—l) (2)

where v; is a column vector representing o' in F5, with some fixed basis of Fpr as an 7 dimensional
vector space over Fo. Notice that it is also true that c(a?') = 0 for any 4, but these equations are
redundant, because they are implied from the equation c(a) = 0.

Now, what is the distance of C? Check that no two columns of H! are dependent (otherwise,
o' = bal, for i # j and b € Fa, and that is wrong (why?). Hence the distance of C is at least 3. As
the Hamming code is perfect it is exactly 3. O

An automorphisim of a [n, k| code C is a permutation 7 on the set of n coordinates that preserves
the code. For example, cyclic codes are preserved by permutations that map 7 to i + £ mod n.
Automorphisims are closed under composition and inverse and therefore give rise to an automorphim
group of the code. For example, if we take the [n = 2" —1, k = n—r]s Hamming code and index the
coordinates by F; = {ai} in the natural order, then the permutation x — ax is an automorphism
(corresponding to a cyclic shift), and also the Frobenius mapping x — 2 (again, applied on the
coordinates) is an automorphism (check!).
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