
03683072: Error Correcting Codes. November 2017 – Lecture 2

Polynomial Codes and Cyclic Codes

Amnon Ta-Shma and Dean Doron

1 Polynomial Codes

Fix a finite field Fq. For the purpose of constructing polynomial codes, we identify a word of n
elements c = (c0, . . . , cn−1) with its representing polynomial c(x) =

∑n−1
i=0 cix

i.

Definition 1. Fix some integer n and let g(x) be some fixed polynomial of degree m ≤ n− 1. The
polynomial code generated by g(x) is the code whose codewords are the polynomials of degree less
than n that are divisible (without remainder) by g(x).

As an example, take F2, n = 5 and g(x) = x2 + x + 1. The code consists of the 8 codewords
0 · g(x), . . . , (x2 + x + 1) · g(x). Equivalently, we can identify every polynomial with its vector of
coefficients to get a codeword in Fn

2 .

Verify that a polynomial code is linear and has dimension k = n −m. Also, check that if g(x) =∑n−k
i=0 gix

i is the generator polynomial, then an n× k generating matrix for the code is given by

G =


g0 g1 · · · gn−k

g0 g1 · · · gn−k

. . .
. . . · · · . . .

g0 g1 · · · gn−k


T

.

1.1 An example: Reed-Solomon code

To show that Reed-Solomon codes are polynomial codes we need to prove that every Reed-Solomon
code is generated by some polynomial. Fix a field Fq with a generator α and n = q − 1 and
throughout this subsection, let C be a [n, k, n− k + 1]q Reed-Solomon code.

First, we prove:

Lemma 2. Let c = (c0, . . . , cn−1) ∈ Fn
q and c(x) be its representing polynomial. Then, c ∈ C if and

only if c(αt) = 0 for every 1 ≤ t ≤ n− k.

Proof. Let H be the n × (n − k) matrix we defined before, Hi,j = αij for 0 ≤ i ≤ n − 1 and
1 ≤ j ≤ n−k. We saw that HtG = 0 and therefore H is the parity check matrix of the code. Thus,
for c = (c0, . . . , cn−1) ∈ Fn

q , c ∈ C iff Hc = 0. However, almost be definition, Hc = 0 iff c(αt) = 0
for 1 ≤ t ≤ n− k. The claim follows.

Theorem 3. The Reed-Solomon code is a polynomial code.

Proof. Let g(x) =
∏n−k

t=1 (x−αt). The above lemma readily implies that c(x) ∈ C if and only if g(x)
divides c(x).

1

2 Cyclic Codes

Definition 4. A code C is cyclic if every cyclic shift of a codeword in C is also a codeword. That
is, (c0, c1, . . . , cn−1) ∈ C implies that (cn−1, c0, . . . , cn−2) ∈ C.

In the notation of representing polynomials, a code C is cyclic if and only if c(x) ∈ C implies

x · c(x) mod (xn − 1) ∈ C.

If a code is linear, then equivalently we can say that c(x) ∈ C implies

u(x) · c(x) mod (xn − 1) ∈ C

for every u ∈ Fq[x]. Hence, C is a linear cyclic code if and only if C is an ideal in the ring
Fq[x]/(xn − 1).

2.1 An example: Reed-Solomon code

We begin with an example – the [n, k, n− k + 1]q Reed Solomon code. Define

g(x) = Πn−k
t=1 (x− αt).

We saw c ∈ C iff g | c.
Now suppose c ∈ C. Let b = xc(mod xn − 1). Hence b = xc+D(x)(xn − 1). However,

g(x) = Πn−k
t=1 (x− αt) | Πn

t=1(x− αt) = xq−1 − 1 = xn − 1.

Thus, g | xc and g | xn − 1 and therefore g | b. Hence b ∈ C.
The proof also shows why taking modulo xn− 1 makes sense. This is because for all the evaluation
points α we have αn − 1 = 0, thus from the code point of view we can assume xn − 1 = 0.

2.2 Every cyclic Code is a polynomial code

Theorem 5. Let C be a cyclic code over Fq and g the monic polynomial in C of minimal positive
degree (prove that it is unique!). Then g generates C, i.e., c ∈ C iff g | c.

Proof. Suppose there exists b ∈ C such that g - b, g, b are polynomials of degree at most n−1. Now
let c = gcd(g, b). As Fq[x] is an Euclidean ring, there exist u, v ∈ Fq[x] such that

c = gu+ bv,

and therefore also
c = gu+ bv mod (xn − 1).

As C is ideal, b = b mod (xn − 1) ∈ C. However, since g - b, deg(c) < deg(g). Also b 6= 0. But this
is a contradiction to g having the minimal positive degree in C.

2

2.3 Cyclic codes are special polynomial codes

In fact, we can state something stronger and exactly characterize the generators of cyclic codes.

Theorem 6. A polynomial code is cyclic if and only if its generator polynomial divides xn − 1.

Proof. Assume C is a cyclic [n, k] code over Fq. Let g(x) be the generator polynomial of C. We
know g is the minimal degree non-zero monic polynomial in C. Write xn − 1 = h(x)g(x) + r(x)
where deg(r) < deg(g). We have that

r(x) = −h(x)g(x) mod (xn − 1),

so r(x) ∈ C. This means that r(x) = 0, since no other codeword in C can have degree smaller than
deg(g).

For the other direction, let C be an [n, k] polynomial code generated by some g(x) and suppose
g | xn − 1, i.e.,

xn − 1 = gh,

for some h ∈ Fq[x]. Let c ∈ C. We will prove that xc mod (xn − 1) ∈ C and therefore C is cyclic.

c has degree at most n− 1. Also c = gu for some u ∈ Fq[x]. Hence

xc mod (xn − 1) = g · (xu mod h),

and therefore xc mod (xn − 1) ∈ C because C is polynomial.

Now, we can reprove what we already saw:

Corollary 7. The Reed-Solomon code is cyclic.

Proof. The corollary follows from the fact that xn − 1 =
∏n

k=1(x − αi) and the fact that the

generating polynomial is g(x) =
∏n−k

i=1 (x− αi).

2.4 Dual Codes of Cyclic Codes

Let C be an [n, k] cyclic code with a generator g(x) =
∑n−k

i=0 gix
i. We know that g mod xn− 1 and

therefore there exists h(x) =
∑k

i=0 hix
i such that gh = xn − 1.

Let c ∈ C. As g generates C we have c = ga for some a ∈ Fq[x]. Therefore

hc mod (xn − 1) = hga mod (xn − 1) = 0.

This translates to the n constraints:

c0hi + c1hi−1 + . . .+ cn−khi−n+k = 0,

for every 0 ≤ i ≤ n− 1, where the indices are modulo n. It follows that

HT =


hk hk−1 · · · h0

hk hk−1 · · · h0
. . .

. . . · · · . . .

hk hk−1 · · · h0

 (1)

3

is a (n− k)×n matrix of parity checks of C, and because it has the correct rank n− k it is a parity
check matrix of C.
Looking at the generator matrix of a polynomial code we see that:

Theorem 8. Let C be an [n, k] cyclic code generated by g(x) and let h(x) = xn−1
g(x) . Then, the dual

code of C is a cyclic [n, n− k] code whose generator polynomial is xkh(x−1). The polynomial h(x)
is called the check polynomial of C.

Proof. Clearly, the dual code of C is generated by the polynomial
∑k

j=0 hk−jx
j . The only thing

remaining is to note that
k∑

j=0

hk−jx
j =

k∑
j=0

hjx
k−j = xkh(x−1).

3 The Hamming code is cyclic

Any binary Hamming code is equivalent to a cyclic code.

Theorem 9. Fix a field F2r and let n = 2r − 1. Then, there exists a [n, k = n− r, 3]2 cyclic code.
Since the only code with such length, dimension and distance is the Hamming code, the Hamming
code is cyclic.

Proof. Let α be a generator of F∗
2r . Let g be the minimal polynomial of α over Fq. Then g | xn−1

because αn − 1 = 0. Also, g is irreducible and deg(g) ≤ r. As α generates F∗
2r we must have

deg(g) = r. The code C generated by g is therefore a cyclic [n, n−r]2 code. The minimal polynomial
g vanishes on α and all its conjugates, so g(x) = Πm−1

i=0 (x−αi) (and this also determines what is h
such that gh = xn − 1).

The code C can be described as all elements c = (c0, . . . , cn−1) ∈ Fr
2 such that c(α) = 0, or

equivalently, that Ht(c) = 0 where

HT =
(
v0 v1 · · · vn−1

)
(2)

where vi is a column vector representing αi in Fr
2, with some fixed basis of F2r as an r dimensional

vector space over F2. Notice that it is also true that c(α2i) = 0 for any i, but these equations are
redundant, because they are implied from the equation c(α) = 0.

Now, what is the distance of C? Check that no two columns of Ht are dependent (otherwise,
αi = bαj , for i 6= j and b ∈ F2, and that is wrong (why?). Hence the distance of C is at least 3. As
the Hamming code is perfect it is exactly 3.

An automorphisim of a [n, k] code C is a permutation π on the set of n coordinates that preserves
the code. For example, cyclic codes are preserved by permutations that map i to i + k mod n.
Automorphisims are closed under composition and inverse and therefore give rise to an automorphim
group of the code. For example, if we take the [n = 2r−1, k = n−r]2 Hamming code and index the
coordinates by F∗

n =
{
αi
}

in the natural order, then the permutation x→ αx is an automorphism
(corresponding to a cyclic shift), and also the Frobenius mapping x → x2 (again, applied on the
coordinates) is an automorphism (check!).

4

References

[1] Ron Roth. Introduction to coding theory. Cambridge University Press, 2006.

5

