
0368-4283: Space-Bounded Computation 29/05/2018 – Lecture 11

The Leftover Hash Lemma and ε-HSG

Amnon Ta-Shma and Dean Doron Scribe: Noam Parzenchevski

1 A family of hash functions for Nisan’s generator

Recall that for Nisan’s generator we claimed the existence of a 2UFOHF H of functions h : {0, 1}n×
{0, 1}d → {0, 1}m. We now present such a family.

We start by defining the collision probability of a probability distribution:

Definition 1. Let P be a probability distribution over n elements and denote by P (i) = Prx∼P [x =
i]. We will sometimes also consider P as a vector of length n where the ith entry Pi = P (i). The
collision probability of P is col(P) =

∑
i P (i)2 = ||P ||22

The intuition behind the definition is that col(P) measures the likelihood of two independent
samples from P colliding.

Observation 2. Let P be any arbitrary distribution over a set X where |X| = n and U be the
uniform distribution over said set. We observe that:

||P − U ||22 = 〈P − U,P − U〉 = 〈P, P 〉 − 2 〈P,U〉+ 〈U,U〉 (1)

= col(P)− 2
∑
i

Pi ·
1

n
+ col(U) = col(P)− 2

n

∑
i

Pi +
1

n
(2)

= col(P)− 2 col(U) + col(U) = col(P)− col(U) (3)

Observation 3. By Cauchy-Schwartz and Observation 2:

|P − U |21 6 n|P − U |22 = n · (col(P)− col(U))

1.1 The construction

We assume wlog that n is a prime power. We will work over the field F = Fn of n elements. We
define H = {ha,b : a, b ∈ F} where ha,b(x) = ax+ b restricted to its first m bits.

Claim 4. H is a 2UFOHF

Proof. Let M = 2m 6 N = 2n and x1 6= x2. A simple computation shows that:

Pr
h∈H

[h(x1) = σ1 ∧ h(x2) = σ2] = Pr
a,b∈F

[h(x1) = σ1 ∧ h(x2) = σ2] (4)

= Pr
a,b∈F

[(
x1 1
x2 1

)(
a
b

)
=

(
σ1
σ2

)]
(5)

=
1

M2
(6)

As

(
x1 1
x2 1

)
is full rank and we are working over a field

1

Next, we define our extractor E : {0, 1}n ×H → {0, 1}m. We note that d = log |H| = log |F|2 = 2n
and we claim:

Claim 5 (The Leftover Hash Lemma, [ILL89]). The extractor E : {0, 1}n ×H → {0, 1}m defined
by E(x, h) = h(x) is a (k, ε)-strong extractor for d = 2n, k = m+ 2 log 1

ε

Proof. We compute the collision probability of Ud◦E(X,Ud) where X is a flat k-source over K = 2k

elements:

col(Ud ◦ E(X,Ud)) = Pr
h1,h2,x1,x2

[(h1, h1(x1)) = (h2, h2(x2))] (7)

= Pr
h1,h2

[h1 = h2] Pr
x1,x2

[h1(x1) = h2(x2) | h1 = h2] (8)

6 col(H)

[
Pr
x1,x2

[x1 = x2] + Pr
x1,x2,h

[h(x1) = h(x2) | x1 6= x2]

]
(9)

=
1

|H|

[
col(X) +

1

M

]
(10)

=
1

|H|
· 1

M

[
1 +

M

K

]
(11)

= col(UH × Um) · (1 + ε2) (12)

where Prx1,x2,h [h(x1) = h(x2) | x1 6= x2] = 1
M since H is a 2UFOHF.

Therefore, by Observation 2 we have:

||(Ud ◦ E(X,Ud))− Ud × Um||22 = col(Ud ◦ E(X,Ud))− col(Ud × Um) (13)

6 col(Ud × Um)(1 + ε2)− col(Ud × Um) (14)

= ε2
1

|H| ·M
(15)

And thus by Observation 3 |Ud ◦ E(X,Ud)− Ud × Um|1 6
√
|H|M ε2

|H|M = ε

We note that while the seed length is long d = 2n, the entropy loss k − m = 2 log 1
ε is optimal.

For Nisan’s generator, setting the input length as ` = O(log n) yields a family of hash functions
h : {0, 1}` → {0, 1}` where h is described using 2` = O(log n) bits.

2 ε-Hitting Set Generators

Nisan’s generator ε-fools [W,T] branching programs using a seed of length O(log T ·log TW
ε). We now

present a result which “liberates” the log 1
ε factor. The result is a modification of the construction

in [HZ18]. Our construction will use Nisan’s generator whereas the original work gives a more
general construction using arbitrary space bounded PRGs, combined with dispersers.

Before we start, we need to define hitting set generators:

2

Definition 6. A function G : {0, 1}` → {0, 1}r is an ε-Hitting Set Generator (ε-HSG) for [W, r]
branching programs if for any such branching program with machine M we have

Pr
y∈Ur

[M(y) = 1] > ε =⇒ ∃z ∈ U` : M(G(z)) = 1

An ε-HSG is a useful tool for derandomizing probabilistic classes of one-sided errors.

Theorem 7 ([HZ18]). For any W,T, ε there exists an ε-HSG for [W,T]{0,1} branching programs

with seed length ` = O(log T · logWT) +O(log 1
ε)

Let n = max{W,T} and think of ε� 1
n , e.g. ε ≈ n− logn. We begin with a useful claim:

Claim 8. Let v be a vertex in M ’s branching program such that Pr[v vacc] = α. Denote

Γv =
{
w | αn > Pr[w vacc] >

αn

2

}
and let Mj denote the jth layer of M ’s branching program. Then for Γv,j = Γv ∩Mj there exists a
j such that Pr[v Γv,j] > 1

n2

Proof. We first note that on any path v vacc there exists a w ∈ Γv. To see this, fix a path,
let u1 → u2 be adjacent vertices on the path and denote by u3 the other outneighbor of u1. As
Pr[u1 vacc] = 1

2 Pr[u2 vacc] + 1
2 Pr[u3 vacc] clearly Pr[u2 vacc] 6 2 Pr[u1 vacc].

Additionally, the path finishes at vacc where obviously Pr[vacc vacc] = 1. As the probability of
acceptance grows by at most 2 at each stage and eventually reaches 1, clearly we have a w whose
acceptance probability is in the given interval.

Now, assume towards contradiction that for any j we have Pr[v Γv,j] <
1
n2 and note that

Pr[v vacc via Γv,j] = Pr[v Γv,j] · Pr[v vacc | v Γv,j] <
1

n2
· αn =

α

n

by the definition of Γv,j . On the other hand, as v must pass thru some Γv,j :

α = Pr[v vacc] (16)

= Pr[v vacc thru some Γv,j] (17)

6
∑
j

Pr[v vacc via Γv,j] (18)

< n · α
n

= α (19)

in contradiction

Now, for a computation with acceptance probability ε (i.e. Pr[vinit vacc] = ε) fix a set of vertices
vinit = v0, v1, . . . , vk and a set of layers ` = `0 = 0, `1, . . . , `k where k = logn

1
ε such that vi ∈ Γvi−1,`i

where Pr[vi Γvi−1,`i
] > 1

n2 (such vertices and layers exist by Claim 8), and note that by definition

Pr[vk vacc] > nkε = 1. We now show that we can construct a HSG for this path.

For any choice of a vertex v at layer i in the branching program and any layer j > i we can define
a new branching program Bv,j such that Pr[Bv,j = 1] = Pr[v Γv,j in M], this gives us a total of
WT 2 6 n3 branching programs. Let B = {Bv,j : v ∈M, j ∈ [T]} be the set of these BPs.

To construct our HSG, we first record a theorem which encapsulates what we will require from
Nisan’s generator:

3

Theorem 9. Let M be a [W,T] branching program, α > 0 and let h1, . . . , hlog T ∈ H where H is a
2UFOHF and hi : Σ→ Σ, then:

1. (A union bound on Claim 14 in Lecture 9) For a random h = h1, . . . , hlog T :

Pr
h

[h is not α-good for M] 6 log T · |W |3 1

α2|Σ|

2. (Claim 17 in Lecture 9) If h is α-good for M then:

||Mh −M
T || 6 TW 2α

With this, we claim:

Claim 10. There exists an h = h1, . . . , hlog T which 1
2n2 -fools B

Proof. A union bound over the first item in Theorem ?? gives:

Pr[∃B ∈ B : h is not α-good for B] 6 n3 · log T · |W |3 1

α2|Σ|

And by the second item if h is α-good for B then for any M ∈ B:

||Bh −B
T || 6 TW 2 · α

Picking α = 1
2n5 and |Σ| = n17 = poly(W,T, 1α) we get that there exists an h which is 1

2n2 -good for
B. We note that log |Σ| = O(log n)

Corollary 11. For any vertex on the path we’ve defined earlier:

Pr[vi vi+1 in M
h
] >

1

2n2

Proof. As h 1
2n2 -fools B we have:

|Pr[vi vi+1 in MT]− Pr[vi vi+1 in M
h
]| 6 1

2n2

the corollary follows as Pr[vi vi+1 in MT] > 1
n2 since vi+1 ∈ Γvi,`i

We finally define our HSG. The input for the generator is composed of three parts

• h = h1, . . . , hlog T where hi ∈ H

• i = i0 = 1 < i1 < · · · < ik = T a segmentation of [1, n]

• x = x1, . . . , xk where xi ∈ Σ

4

And the output is given by:

G(h, i, x) = (Nh(x1))i1 ◦ (Nh(x2))i2−i1 ◦ · · · ◦ (Nh(xk))ik−ik−1

where (Nh(x))j1−j2 denotes the output of Nisan’s generator restricted to its first j1 − j2 bits.

By Claim 9 we know that for h = h and i = ` we must have a set of inputs x such that for any j

the generator’s jth block (Nh(xj))ij−ij−1 takes vj → vj+1. It follows that G(h, `, x) takes v0 to a
vertex vk such that Pr[vk vacc] = 1, which is what we needed.

Claim 12. The seed length of G is O(log2 n) +O(log 1
ε)

Proof. A straightforward computation shows that:

• |h| = k · 2 log |Σ| = log T ·O(log n) = O(log2 n)

• |i| = log
(
T
k

)
6 log

(
n
k

)
6 k log n =

log 1
ε

logn ·O(log n) = O(log 1
ε)

• |x| = k · log |Σ| = O(log 1
ε)

The claim follows

References

[HZ18] William M Hoza and David Zuckerman. Simple optimal hitting sets for small-success rl.
Technical Report TR18-063, ECCC, 2018.

[ILL89] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation from
one-way functions. In Proceedings of the twenty-first annual ACM symposium on Theory
of computing, pages 12–24. ACM, 1989.

5

