0368-4283: Space-Bounded Computation 29/05/2018 — Lecture 11

The Leftover Hash Lemma and e-HSG

Amnon Ta-Shma and Dean Doron Scribe: Noam Parzenchevski

1 A family of hash functions for Nisan’s generator

Recall that for Nisan’s generator we claimed the existence of a 2UFOHF H of functions h : {0,1}" x
{0,1}¢ — {0,1}™. We now present such a family.

We start by defining the collision probability of a probability distribution:

Definition 1. Let P be a probability distribution over n elements and denote by P(i) = Pry.p[z =
i]. We will sometimes also consider P as a vector of length n where the ith entry P; = P(i). The
collision probability of P is col(P) =, P(i)> = ||P|/3

The intuition behind the definition is that col(P) measures the likelihood of two independent
samples from P colliding.

Observation 2. Let P be any arbitrary distribution over a set X where |X| = n and U be the
uniform distribution over said set. We observe that:

|P-U|3=(P-UP-U)=(P,P)—2(P,U)+ (U,U) (1)
=col(P)—2) P;- % + col(U) = col(P) — %Z P+ % (2)
= col(P) — 2col(U) + col(U) = col(P) — col(U) (3)

Observation 3. By Cauchy-Schwartz and Observation 2:
|P—U|? <n|P—Ul|3=n-(col(P) — col(U))
1.1 The construction

We assume wlog that n is a prime power. We will work over the field F = F,, of n elements. We
define H = {hgyp : a,b € F} where hg(z) = ax + b restricted to its first m bits.

Claim 4. H is a 2UFOHF

Proof. Let M = 2™ < N = 2" and x1 # x3. A simple computation shows that:

hPeg-t [h(z1) = 01 A h(x2) = 09 = a,}b)éF [h(z1) = 01 A h(z9) = 09] (4)

[DG)=(R)]) e

=5 ()

As (2 1 > is full rank and we are working over a field O

1

Next, we define our extractor E : {0,1}" x H — {0,1}"™. We note that d = log |H| = log |F|> = 2n
and we claim:

Claim 5 (The Leftover Hash Lemma, [ILL89]). The extractor E : {0,1}" x H — {0,1}"" defined
by E(z,h) = h(z) is a (k,€)-strong extractor for d = 2n,k = m+ 2log 1

Proof. We compute the collision probability of Uyo E(X, Uy) where X is a flat k-source over K = 2*
elements:

col(Ugo E(X,Ua)) = Pr [(h1,ha(21)) = (ha, ha(22))] (7)
=, Pr [l =ho] Pr [hi(z1) = ha(2) | h1 = ho] (8)
< col(H) L{’;Q oy =mo+ Pr(h(z1) = h(za) [21 # 2] (9)
1 1
= [CO](X) + M} (10)
11 M
ZW’M[HK] (11)
= col(Uy x Up) - (1 + €%) (12)

where Pry, 4, 5 [R(21) = h(x2) | 21 # 22] = 57 since H is a 2UFOHF.

Therefore, by Observation 2 we have:

|(Ug 0 E(X,Uy)) — Ug x Un||3 = col(Ug o BE(X,Uy)) — col(Uy x Uy,) (13)
< col(Uyg x Up)(1 + €%) — col(Ug x Upy) (14)
1
2
= 15
T (15)
And thus by Observation 3 |Ugo E(X,Uy) — Ug X Up|1 < 1/]H\Mﬁ =€ O

We note that while the seed length is long d = 2n, the entropy loss k — m = QIOg% is optimal.
For Nisan’s generator, setting the input length as ¢ = O(logn) yields a family of hash functions
h:{0,1}* — {0,1}* where h is described using 2¢ = O(logn) bits.

2 e-Hitting Set Generators

Nisan’s generator e-fools [W, T'] branching programs using a seed of length O(log T-log @) We now
present a result which “liberates” the log % factor. The result is a modification of the construction
in [HZ18]. Our construction will use Nisan’s generator whereas the original work gives a more
general construction using arbitrary space bounded PRGs, combined with dispersers.

Before we start, we need to define hitting set generators:

Definition 6. A function G : {0,1}" — {0,1}" is an e-Hitting Set Generator (e-HSG) for [W,r]
branching programs if for any such branching program with machine M we have

ylgg M(y)=1>¢ = Fze€Uy: M(G(z)) =1

An e-HSG is a useful tool for derandomizing probabilistic classes of one-sided errors.

Theorem 7 ([HZ18]). For any W, T, e there exists an e-HSG for [W,T]s 1y branching programs
with seed length £ = O(log T - log WT) 4+ O(log %)

Let n = max{W, T} and think of e < 1, e.g. € & n~1°6". We begin with a useful claim:

Claim 8. Let v be a vertex in M ’s branching program such that Pr[v ~» vgec] = . Denote

r,= {w | an = Prlw ~ vgee] = %}

and let M; denote the jth layer of M’s branching program. Then for ', ; = I'y N M; there ewists a
j such that Prv ~ Ty ;] > 25

Proof. We first note that on any path v ~~ v, there exists a w € I',. To see this, fix a path,
let w1 — wuo be adjacent vertices on the path and denote by w3 the other outneighbor of u;. As
Prlu; ~ vae) = %PI‘[’U,Q ~ Ugee) + %Pr[u;e, ~ Ugee) clearly Prlug ~~ vgee] < 2Pr[ug ~ vgec)-
Additionally, the path finishes at vg.. where obviously Pr{veee ~» vace] = 1. As the probability of
acceptance grows by at most 2 at each stage and eventually reaches 1, clearly we have a w whose
acceptance probability is in the given interval.

Now, assume towards contradiction that for any j we have Pr[v ~ I, ;] < 1 and note that

3

1
Prv ~» vgee via 'y j] = Prjv ~» Ty] - Pr{v ~ vgee | v~ Ty 4] < — an = @
n n
by the definition of I', ;. On the other hand, as v must pass thru some I',, ;:
a = Pr{v ~ vgec] (16)
= Pr[v ~» Vg thru some I] (17)
< Z Prv ~» vgee via Iy] (18)
J
o
n. X 19
n - o (19)
in contradiction]

Now, for a computation with acceptance probability € (i.e. Pr|vinit ~ vace] = €) fix a set of vertices
Vinit = V0, V1, . .., U and a set of layers £ = 0y = 0,41, ..., ¢, where k = log,, % such that v; € Fviﬂ,e.

where Prlv; ~ T, , | > 25 (such vertices and layers exist by Claim 8), and note that by definition
Prvk ~ vVaee| = nFe = 1. We now show that we can construct a HSG for this path.
For any choice of a vertex v at layer ¢ in the branching program and any layer j > ¢ we can define

a new branching program B, j such that Pr[B, ; = 1] = Pr[v ~» Iy ; in M], this gives us a total of
WT? < n? branching programs. Let B = {B,; : v € M,j € [T]} be the set of these BPs.

To construct our HSG, we first record a theorem which encapsulates what we will require from
Nisan’s generator:

Theorem 9. Let M be a (W, T| branching program, o > 0 and let hy, ..., hiogT € H where H is a
2UFOHF and h; : ¥ — X, then:

1. (A union bound on Claim 14 in Lecture 9) For a random h = hy, ..., Pog T
— 1
Pr[h is not a-good for M] <logT - |W|? 5
R o3|

2. (Claim 17 in Lecture 9) If h is a-good for M then:
1M — MT|| < TW?a

With this, we claim:

Claim 10. There exists an h = hq, ..., hogT which #—faols B

Proof. A union bound over the first item in Theorem 7?7 gives:

1
a?|X|

Pr[3B € B : h is not a-good for B] < n® - logT - |[W?

And by the second item if h is a-good for B then for any M € B:

1By — BT|| < TW?-a

Picking o = # and || = n'T = poly(W, T, 1) we get that there exists an R which is #—good for
B. We note that log|¥X| = O(logn) O

Corollary 11. For any vertex on the path we’ve defined earlier:

) 1
Prlv; ~ vip1 in Mz| > e

Proof. As n ﬁ—fools B we have:

| Prfv; ~ vi41 in MT] — Prfv; ~ vi41 in Mﬁ” < o2
n
the corollary follows as Prlv; ~ v;y1 in M7T] > # since v;41 € I'y, 4, O

We finally define our HSG. The input for the generator is composed of three parts

° E:hl,...,hlogTWhere hi e H
e i=iy=1<i; <-- <ir =T asegmentation of [1,n]
e T =2ux1,...,T; where z; € X

And the output is given by:
G(Ev %’ E) = (Nﬁ(xl))il © (Nﬁ(x2))i2—i1 -0 (Nﬁ(xk))ik_ik—l
where (N5(x))j,—j, denotes the output of Nisan’s generator restricted to its first j; — jo bits.

By Claim 9 we know that for h = 7 and i = ¢ we must have a set of inputs T such that for any j
the generator’s jth block (Nj(2;))i;—,_, takes v; — vjy1. It follows that G(h, !, T) takes v to a
vertex vy such that Prlvg ~> vge] = 1, which is what we needed.

Claim 12. The seed length of G is O(log? n) + O(log 1)
Proof. A straightforward computation shows that:

o || =k-2log|%| =logT - O(logn) = O(log®n)

- og 1
o [i| =log (}) <log (}) < klogn = &% - O(logn) = O(log)

logn

e |Z| =k -log|Z| = O(log 1)

The claim follows OJ

References

[HZ18] William M Hoza and David Zuckerman. Simple optimal hitting sets for small-success rl.
Technical Report TR18-063, ECCC, 2018.

[ILL89] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation from
one-way functions. In Proceedings of the twenty-first annual ACM symposium on Theory
of computing, pages 12-24. ACM, 1989.

