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Random Walks over Undirected Graphs – I

Amnon Ta-Shma and Dean Doron

1 Undirected Graphs as Operators

Definition 1. Let G be a (possibly weighted) undirected graph over n vertices with an adjacency
matrix AG. The normalized adjacency matrix, or the transition matrix, is the matrix A = AGD

−1

where D is the diagonal degree matrix, i.e., D[i, i] =
∑

j AG[i, j] for every i ∈ [n], and so

A[i, j] =
1

d(j)
AG[i, j].

If G is d-regular then A is Hermitian, and is simply 1
dAG.

Theorem 2. Let G be an undirected graph over n vertices and let A be its normalized adjacency
matrix. Let λn, . . . , λ1 be the eigenvalues of A. Then:

1. λ1, . . . , λn are real.

2. λ1 = 1.

3. λn ≥ −1.

4. λ1 = . . . = λk = 1 and λk+1 < 1 if and only if G has exactly k connected components.

5. λn = −1 if and only if at least one of the connected components of G is bipartite.

Claim 3 (bipartite graphs). Let G be a d-regular undirected bipartite graph over n vertices and let
AG be its adjacency matrix. Then, the eigenvalues of AG are symmetric around 0. That is, every
positive eigenvalue λk has a negative eigenvalue −λk and vice versa.

2 Undirected graphs have non-negligible spectral gap

Throughout, we denote λ̄(G) = maxi 6=1 |λi|. In this section we will find an upper bound on λ2

and a lower bound on λn, thus bounding λ̄ from above. Throughout, we let G be a d-regular,
non-bipartite, connected undirected graph (similar results also hold in the non-regular case). We
let A be the normalized adjacency matrix of G, with eigenvalues λn ≤ . . . ≤ λ1 and corresponding
eigenvectors vn, . . . , v1. We also let 1 be the all-ones vector, J be the all-ones matrix and 1X is the
vector which is 1 over some index set X and 0 elsewhere.

Claim 4. Let G be an undirected, regular graph over n vertices and let A be its normalized adjacency
matrix. Then, λ̄(G) =

∥∥A− 1
nJ
∥∥.
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Claim 5. Let A be the normalized adjacency matrix of a regular undirected graph over n vertices
and let λn ≤ . . . ≤ λ1 be the eigenvalues of A. Then,

λ2 = max
x⊥1,x 6=0

x†Ax

x†x

λn = min
x 6=0

x†Ax

x†x

Claim 6. Let M be a symmetric n × n operator, v a real length n vector. Let D be the n × n
diagonal matrix with D[i, i] =

∑
jM [i, j]. Then∑

i,j

M [i, j](vi − vj)2 = 2v†(D −M)v.

Proof. A straightforward computation shows that:∑
i,j

M [i, j](vi − vj)2 =
∑
i,j

M [i, j](v2
i + v2

j )− 2
∑
i,j

M [i, j]vivj = 2
∑
i,j

M [i, j]v2
i − 2

∑
i

vi
∑
j

M [i, j]vj

= 2
∑
i

v2
i

∑
j

M [i, j]− 2
∑
i

vi(Mv)i = 2v†Dv − 2
∑
i

vi(Mv)i

= 2v†Dv − 2v†Mv = 2v†(D −M)v.

Theorem 7 ([2]). λ2 ≤ 1− 1
2dn3 .

Proof. We first recall:

Claim 8. v†Av = v†v − 1
2

∑
i,j A[i, j](vi − vj)2.

Thus,

λ2 = max
x⊥1

x†Ax

x†x
= 1− 1

2d
· min
x⊥1,‖x‖=1

∑
i,j:(i,j)∈E

(xi − xj)2.

Let x be the non-zero vector with ‖x‖ = 1 and x ⊥ 1 that is gives the above optimum. W.l.o.g.
x1 ≥ 1√

n
. There exists j 6= 1 for which xj < 0. Clearly, |x1 − xj | ≥ 1√

n
.

As G is connected, there is a path of length at most n from vertex 1 to vertex j, so by the triangle
inequality there exists an edge {`1, `2} ∈ E on that path so that |x`1 − x`2 | ≥ 1

n
√
n

. Hence:

∑
(i,j)∈E

(xi − xj)2 ≥ 1

n3
,

so overall λ2 ≤ 1− 1
2dn3 .

Theorem 9 ([3]). λn ≥ −1 + 1
dn2 .
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Proof. It holds that λn = minx:‖x‖=1 x
†Ax. If G is simple (that is, no self loops), then for an x that

minimizes x†Ax we have

1 + λn =
1

d

∑
i

dx2
i +

2

d

∑
{i,j}∈E

xixj =
1

d

∑
{i,j}∈E

(x2
i + x2

j ) +
2

d

∑
{i,j}∈E

xixj =
1

d

∑
{i,j}∈E

(xi + xj)
2.

If G is not simple then

1 + λn ≥
1

d

∑
{i,j}∈E,i 6=j

(xi + xj)
2.

In any case, λn ≥ −1 + 1
d

∑
{i,j}∈E,i 6=j(xi + xj)

2. W.l.o.g., assume that x1 ≥ 1√
n

.

We partition the vertices to two sets, A = {i : xi ≥ 0} and B = [n] \A. As G is not bipartite, there
exists an edge {i, j} ∈ E such that either both coordinates xi, xj are non-negative or both of them
are negative, i.e., A×A ∩ E 6= ∅ or B ×B ∩ E 6= ∅ (why?).

First, consider the case where {i, j} ∈ A × A ∩ E and take the shortest path from vertex 1 to i
(assume it’s shorter than the shortest path from 1 to j). Then, either the path 1 ∼ . . . ∼ i or
1 ∼ . . . ∼ i ∼ j is of even length. Let k be the endpoint of the path of odd length (i.e., k ∈ {i, j})
and w.l.o.g. assume that the path is labeled by [k] (so k is even). We then have:

∑
{i,j}∈E

(xi + xj)
2 ≥

k−1∑
`=1

(x` + x`+1)2 ≥ 1

k − 1

(
k−1∑
`=1

|x` + x`+1|

)2

.

As k is even, we can write(
k−1∑
`=1

|x` + x`+1|

)2

≥ ((x1 + x2) + (−x2 − x3) + . . .+ (−xk−2 − xk−1) + (xk−1 + xk))
2

= (x1 + xk)
2 ≥ 1

n
,

so λn ≥ −1 + 1
dn(k−1) ≥ −1 + 1

dn2 .

Next, we consider the case where {i, j} ∈ B × B ∩ E. Using the above reasoning, there exists a
path 1, . . . , k where k is odd and xk < 0. Similarly, we can write(

k−1∑
`=1

|x` + x`+1|

)2

≥ ((x1 + x2) + (−x2 − x3) + . . .+ (xk−2 + xk−1) + (−xk−1 − xk))2

= (x1 − xk)2 ≥ 1

n
,

and the same result holds.

Corollary 10. Let G be a regular, connected, non-bipartite, undirected graph over n vertices. Then,
λ̄(G) ≤ 1− 1

2n4 .

In fact, tighter bonds are known for both the second and smallest eigenvalue:

Corollary 11. Let G be a d-regular, connected, non-bipartite, undirected graph over n vertices.
Then, λ̄(G) ≤ 1− 1

dn2 .
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3 Random walks over expanders mix fast

In a random walk over a graph G, we start with some initial vertex v0 and at each step we move from
vertex v to an adjacent vertex in Γ(v) with probability proportional to the degree of v. Namely,
if A is the normalized adjacency matrix of G, we move from vertex i to vertex j with probability
A[j, i].

Suppose we start a random walk at a vertex chosen by a probability distribution p. After taking
one step, the probability of being at vertex i is

∑
j pjA[i, j] so the probability distribution after one

step is described by Ap.

Iterating the above reasoning, we see that, after a t-step random walk whose initial vertex is chosen
according to p, the last vertex reached is distributed according to Atp. We say that π is a stationary
distribution if Aπ = π, i.e., no further steps change the distribution.

Does every random walk over a graph approach some stationary distribution? If so, how fast? In
the case of undirected regular expanders, the uniform distribution is the stationary distribution
and we converge to it in a rate that depends on λ̄(G). Indeed, λ̄(Gt) = λ̄(G)t so if λ̄(G) is bounded

away from 1, λ̄(Gt) approaches 0 and At → λ1v1v
†
1 = 1

nJ . Thus, Atp → 1
n1 for every distribution

p. Formally:

Lemma 12. Let G be a regular graph over n vertices with normalized adjacency matrix A. Then,
for every distribution p over the vertices and integer t, we have∥∥∥∥Atp− 1

n
1

∥∥∥∥ ≤ λ̄(G)t.

Proof. Note that for every distribution, 1
nJp = 1

n1 and recall that λ̄(G)t = λ̄(Gt) =
∥∥At − 1

nJ
∥∥.

Denote by λn ≤ . . . ≤ λ1 the eigenvalues of A and vn, . . . , v1 the corresponding eigenvectors. Recall
that v1 = 1√

n
1, λ1 = 1 and we can write A =

∑
i λiviv

†
i and At =

∑
i λ

t
iviv

†
i . Thus:∥∥∥∥Atp− 1

n
1

∥∥∥∥ ≤ ∥∥∥∥Atp− 1

n
Jp

∥∥∥∥ ≤ ∥∥∥∥At − 1

n
J

∥∥∥∥ ‖p‖ ≤ λ̄(G)t.

We often measure the distance between distribution in the `1-norm, as it is, up to a factor of
2, equivalent to the total variation distance between probability distributions – the maximum
over all events of the difference between the probability of the event happening with respect to
one distribution and the probability of it happening with respect to the other distribution. As
‖x‖1 ≤

√
|Supp(x)| ‖x‖2, we get:

Corollary 13. Let G be a regular graph over n vertices with normalized adjacency matrix A. Then,
for every distribution p over the vertices and integer t, we have∥∥∥∥Atp− 1

n
1

∥∥∥∥
1

≤
√
n · λ̄(G)t.

Specifically, for t = Ω
(

1
1−λ̄(G)

ln n
ε

)
we have

∥∥Atp− 1
n1
∥∥

1
≤ ε.
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3.1 Expanders have small diameter

The diameter of a graph is the maximum minimal distance between two vertices in the graph. For
an undirected regular graph G, if λ̄(G) is constant bounded away from 1, the graph’s diameter is
logarithmic. More generally:

Lemma 14. Let G be a d-regular undirected connected graph over n vertices. Then, the diameter
of G is at most 1 + log 1

λ̄(G)
n.

The proof follows from
∥∥Atp− 1

n1
∥∥
∞ ≤

∥∥Atp− 1
n1
∥∥ ≤ λ̄(G)t.

4 Undirected connectivity in RL

Say we are given an undirected graph G and two vertices s, t and wish to decide whether s is
connected to t. The fact that undirected graphs have non-negligible spectral gap together with the
fact that spectral gap implies mixing, readily suggests the following algorithm:

1. Add self loops to G (at least one for each vertex) until it becomes regular. Note that it does
not affect the graph’s connectivity.

2. Start at vertex s.

3. For T = 4n4 lnn steps: Move to a random neighbor of the current vertex.

4. If at any point you come across t, halt and output “connected”. Otherwise, output “not
connected”.

Theorem 15 ([1]). USTCONN ∈ RL.

Proof. First, note that we only need to keep track of the current vertex, the number of steps
and taking a random step. The overall space complexity is O(log) + log T = O(log n). If s is
not connected to t, we always reject. We now move to the main part – analyzing the success
probability in the case where s and t are connected. For the sake of analysis, we consider the
connected component of s and t.

Since every vertex contains a self loop, the graph has no bipartite components. Let A be the
normalized adjacency matrix of G (after adding the self loops), with eigenvalues λn ≤ . . . ≤ λ1 and
corresponding eigenvectors vn, . . . , v1. Let xT be the probability distribution over the vertices after
T steps. Thus, xT = ATx0 where x0 is 1 on s and 0 elsewhere.

By Lemma 12 and Corollary 11, we have∥∥∥∥xT − 1

n
1

∥∥∥∥
∞
≤
∥∥∥∥xT − 1

n
1

∥∥∥∥ ≤ (
1− 1

2n4

)T
≤ e−

T
2n4 ≤ 1

n2
,

so particularly xT (t) ≥ 1
2n .

If we use the tighter bound for λ̄(G), it is sufficient to take T = 2dn2 lnn (where d is the degree of
our “regularized” graph).

Think about which ingredients would fail if we consider directed graphs instead of undirected ones.
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4.1 Universal traversal sequences

Definition 16. A walk according to σ ∈ [d]T that starts in v1 corresponds to taking the σ(i)-th
neighbor of vi at step i. A sequence σ is a universal traversal sequence for d-regular undirected
graphs if for every such graph, every labeling of its edges and every two vertices s, t, a walk from s
according to σ will visit t (provided they are connected).

Claim 17. There exists a UTS of length O(dn5 log n log d).

Proof. Fix T = 4n4 lnn, fix a d-regular undirected graph G and two vertices s, t. We proved that a
uniform σ does not reach t with probability at most 1− 1

2n (and it is true regardless of the vertex
we start with!).

Thus, over a uniform σ, the probability that a random walk from s does not reach t within T ′ =

8Tn3 log d = O(n7 log n log d) steps is at most
(
1− 1

2n

)8n3

≤ 2−4n2 log d. The total number of labeled

graphs is at most (d+1)n
2 ≤ 22 log dn2

, so overall, by the union-bound, the probability that a uniform
σ is not a UTS is at most

n2 · 22 log dn2 · 2−4n2 log d < 1,

so there exists such a UTS. The length of a UTS can be decreased to T ′ = O(dn5 log n log d) by
strengthening the bound on the spectral gap of undirected graphs (hence taking T = 2n2d lnn).

We will soon prove that USTCONN ∈ L – a major breakthrough in derandomization, due to
Reingold. Finding an explicit UTS is still a major open problem in pseudorandomness and we will
talk about it later on.

For consistently labeled expander graphs, an explicit UTS is known and we will see it in the exercise.

5 The Expander Mixing Lemma

We first show that an expander behaves like a random graph in the following sense: The number
of edges between every two large subsets S, T ⊆ [n] is close to what we would have expected in a
random graph of average degree d, i.e., d

n |S||T |.

Lemma 18 (Expander Mixing Lemma). Let G = (V = [n], E) be a d-regular graph and let S, T ⊆
[n]. Then, ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ̄(G) · d
√
|S|(1− |S|/n)|T |(1− |T |/n)

where |E(S, T )| is the number of edges between the two sets.

Proof. Let A be the normalized adjacency matrix of G, so we have

|E(S, T )| = d · 1†TA1S .

We decompose 1S and 1T to a component parallel to 1 (the 1-eigenvector of A) and a perpendicular

component. Write 1S = |S|
n 1 + 1

n1⊥S where

1⊥S [i] =

{
n− |S| i ∈ S
−|S| i /∈ S.
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and notice that 1⊥S ⊥ 1. Similarly we write 1T = |T |
n 1 + 1

n1⊥T . Then, using the fact that A1 = 1:

E(S, T ) = d ·
(
|T |
n

1 +
1

n
1⊥T

)†
A

(
|S|
n

1 +
1

n
1⊥S

)
= d · |S||T |

n2
1†1 +

1

n2

(
1⊥T

)†
A1⊥S .

As both 1S and 1S are perpendicular to the 1-eigenvector,∣∣∣∣(1⊥T

)†
A1⊥S

∣∣∣∣ ≤ λ̄(G) ·
∥∥∥1⊥T ∥∥∥ · ∥∥∥1⊥S ∥∥∥ .

A simple calculation shows that
∥∥1⊥S ∥∥ =

√
n|S|(n− |S|) and likewise for

∥∥1⊥T ∥∥, so overall∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ ≤ λ̄(G) · d
n2
·
√
n|S|(n− |S|)

√
n|T |(n− |T |)

= λ̄(G) · d ·
√
|S|(1− |S|/n)

√
|T |(1− |T |/n),

as desired.

Corollary 19. With respect to densities (dividing by dn), we can express the above result as∣∣∣∣ Pr
e=(i,j)∈E

[i ∈ S ∧ j ∈ T ]− ρ(S)ρ(T )

∣∣∣∣ ≤ λ̄(G) ·
√
ρ(S)(1− ρ(S))ρ(T )(1− ρ(T )),

where for A ⊆ B we denote ρ(A) = |A|/|B|.

5.1 Expanders have no small cuts

An often desirable feature of a graph is that no deletion of few edges can cause the graph to be
disconnected. It is indeed the case with expanders. Given an undirected d-regular graph G = (V,E)
we define the edge expansion of a cut (S, V \ S) as

h(S) =
|E(S, V \ S)|

d ·min {|S|, |V \ S|}
,

and we let h(G) = minS⊆V h(S).

Exercise 20. Let G = (V,E) be a d-regular undirected graph over n vertices. Use the expander

mixing lemma to prove h(G) ≥ 1−λ̄(G)
2 .

We want to prove the stronger theorem:

Theorem 21. Let G = (V,E) be a d-regular undirected graph over n vertices and let λ2 be the
second eigenvalue of its normalized adjacency matrix A. Then, h(G) ≥ 1−λ2

2 .

That is, for every S ⊆ [V ] of cardinality at most n
2 , |E(S, V \ S)| ≥ d(1−λ2)

2 |S|.

This theorem is one side of “Cheeger’s Inequality”. The other, harder, side is h(G) ≤
√

2(1− λ2)
and we will not prove it. Morally, Cheeger’s Inequality tells us that algebraic expansion and edge
expansion are equivalent up to some loss in parameters.
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Proof. We need to prove that λ2 ≥ 1− 2h(S) for every S with |S| ≤ n
2 . Equivalently, we can find

a v ⊥ 1 for which v†Av
v†v
≥ 1− 2h(S). Define a vector v such that:

vi =

{
−n+ |S| i ∈ S
|S| i /∈ S.

First, notice that v ⊥ 1, as
∑

i vi = |S|(−n+ |S|) + |S|(n− |S|) = 0. Also, we have

v†v = |S|(−n+ |S|)2 + (n− |S|)|S|2 = n|S|(n− |S|).

In our case,∑
i,j

A[i, j](vi − vj)2 =
1

d

∑
(i,j)∈E(S,S)

(|S| − (|S| − n))2 =
n2

d
2|E(S, V \ S)|,

so v†Av = v†v − n2

d |E(S, V \ S)|, and

v†Av

v†v
= 1− n2|E(S, V \ S)|

d · v†v
= 1− n|E(S, V \ S)|

d · |S|(n− |S|)
≥ 1− 2|E(S, V \ S)|

d · |S|
= 1− 2h(S).
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