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Random Walks over Undirected Graphs – II

Amnon Ta-Shma and Dean Doron

1 The Expander Mixing Lemma

We first show that an expander behaves like a random graph in the following sense: The number
of edges between every two large subsets S, T ⊆ [n] is close to what we would have expected in a
random graph of average degree d, i.e., d

n |S||T |.

Lemma 1 (Expander Mixing Lemma). Let G = (V = [n], E) be a d-regular graph and let S, T ⊆ [n].
Then, ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ̄(G) · d
√
|S|(1− |S|/n)|T |(1− |T |/n)

where |E(S, T )| is the number of edges between the two sets.

Proof. Let A be the normalized adjacency matrix of G, so we have

|E(S, T )| = d · 1†TA1S .

We decompose 1S and 1T to a component parallel to 1 (the 1-eigenvector of A) and a perpendicular

component. Write 1S = |S|
n 1 + 1

n1
⊥
S where

1⊥S [i] =

{
n− |S| i ∈ S
−|S| i /∈ S.

and notice that 1⊥S ⊥ 1. Similarly we write 1T = |T |
n 1 + 1

n1
⊥
T . Then, using the fact that A1 = 1:

E(S, T ) = d ·
(
|T |
n

1 +
1

n
1⊥T

)†
A

(
|S|
n

1 +
1

n
1⊥S

)
= d · |S||T |

n2
1†1 +

1

n2

(
1⊥T

)†
A1⊥S .

As both 1S and 1S are perpendicular to the 1-eigenvector,∣∣∣∣(1⊥T )†A1⊥S ∣∣∣∣ ≤ λ̄(G) ·
∥∥∥1⊥T ∥∥∥ · ∥∥∥1⊥S ∥∥∥ .

A simple calculation shows that
∥∥1⊥S ∥∥ =

√
n|S|(n− |S|) and likewise for

∥∥1⊥T ∥∥, so overall∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ ≤ λ̄(G) · d
n2
·
√
n|S|(n− |S|)

√
n|T |(n− |T |)

= λ̄(G) · d ·
√
|S|(1− |S|/n)

√
|T |(1− |T |/n),

as desired.
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Corollary 2. With respect to densities (dividing by dn), we can express the above result as∣∣∣∣ Pr
e=(i,j)∈E

[i ∈ S ∧ j ∈ T ]− ρ(S)ρ(T )

∣∣∣∣ ≤ λ̄(G) ·
√
ρ(S)(1− ρ(S))ρ(T )(1− ρ(T )),

where for A ⊆ B we denote ρ(A) = |A|/|B|.

1.1 Expanders have no small cuts

An often desirable feature of a graph is that no deletion of few edges can cause the graph to be
disconnected. It is indeed the case with expanders. Given an undirected d-regular graph G = (V,E)
we define the edge expansion of a cut (S, V \ S) as

h(S) =
|E(S, V \ S)|

d ·min {|S|, |V \ S|}
,

and we let h(G) = minS⊆V h(S).

Exercise 3. Let G = (V,E) be a d-regular undirected graph over n vertices. Use the expander

mixing lemma to prove h(G) ≥ 1−λ̄(G)
2 .

We want to prove the stronger theorem:

Theorem 4. Let G = (V,E) be a d-regular undirected graph over n vertices and let λ2 be the
second eigenvalue of its normalized adjacency matrix A. Then, h(G) ≥ 1−λ2

2 .

That is, for every S ⊆ [V ] of cardinality at most n
2 , |E(S, V \ S)| ≥ d(1−λ2)

2 |S|.

This theorem is one side of “Cheeger’s Inequality”. The other, harder, side is h(G) ≤
√

2(1− λ2)
and we will not prove it. Morally, Cheeger’s Inequality tells us that algebraic expansion and edge
expansion are equivalent up to some loss in parameters.

Proof. We need to prove that λ2 ≥ 1− 2h(S) for every S with |S| ≤ n
2 . Equivalently, we can find

a v ⊥ 1 for which v†Av
v†v
≥ 1− 2h(S). Define a vector v such that:

vi =

{
−n+ |S| i ∈ S
|S| i /∈ S.

First, notice that v ⊥ 1, as
∑

i vi = |S|(−n+ |S|) + |S|(n− |S|) = 0. Also, we have

v†v = |S|(−n+ |S|)2 + (n− |S|)|S|2 = n|S|(n− |S|).

In our case,∑
i,j

A[i, j](vi − vj)2 =
1

d

∑
(i,j)∈E(S,S)

(|S| − (|S| − n))2 =
n2

d
2|E(S, V \ S)|,

so v†Av = v†v − n2

d |E(S, V \ S)|, and

v†Av

v†v
= 1− n2|E(S, V \ S)|

d · v†v
= 1− n|E(S, V \ S)|

d · |S|(n− |S|)
≥ 1− 2|E(S, V \ S)|

d · |S|
= 1− 2h(S).
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2 Density Samplers

Suppose we have some set A ⊆ {0, 1}n and we want to (probabilistically) approximate its density
ρ(A) = |A|/2n. Suppose we are given oracle access to an indicator I[x] which is 1 if and only
if x ∈ A and we want to approximate ρ(A) by drawing X1, . . . , Xk uniformly at random and
outputting 1

k

∑k
i=1 I[Xi]. Clearly, that naive approach requires kn random bits. How large should

k be in order to get an additive error of ε with high probability (say at least 1− δ)? As X1, . . . , Xk

are independent, we can use Chernoff and get

Pr

[∣∣∣∣∣1k
k∑
i=1

I[Xi]− ρ(A)

∣∣∣∣∣ > ε

]
≤ e−2kε2 ,

so k = 1
2ε2

ln 1
δ is sufficient (and in a sense also necessary) and we use O( n

ε2
log 1

δ ) random bits.

The question we ask is whether we can re-use randomness and approximate the density well without
using too many random bits.

2.1 Via random walks on expander

Let us first address the easier problem: We only want to hit a set A ⊆ {0, 1}n. A simple calculation
shows that k = 1

ρ(A) ln 1
δ is sufficient, and in the naive approach we therefore use n

ε ln 1
δ random

bits.

Consider the following derandomization of that naive approach:

• Let G = (V = {0, 1}n , E) be an expander with constant degree D and a constant λ̄(G) =
λ̄ < 1.

• Choose X1 uniformly at random and take a random walk on G of length T − 1 to obtain
X2, . . . , XT . Accept if and only if I[Xi] = 1 for some i.

Clearly, the probability that the algorithm errs is

Pr

[
T∧
i=1

(Xi /∈ A)

]

and we want to estimate it. Note that if we choose G to be the complete clique over 2n vertices
than this is exactly the naive, random sampling, algorithm.

For the analysis, we need to prove that a random walk over an expander visits every large enough
set with high probability (or, equivalently, is contained in a given set with very low probability).

Theorem 5. Using the above notations,

Pr

[
T∧
i=1

(Xi /∈ A)

]
≤ (1− γρ(A))T ,

where γ = 1− λ̄ is the spectral gap of the expander.
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In our case, we want (1− γρ(A))T < δ, so it is sufficient to take T = 1
γρ(A) ln 1

δ (which is essentially

the same as the truly random case), but we only use n+ logD · (T − 1) = n+O(T ) random coins,
instead of the trivial nT .

Proof. The proof has two main components. First, we need to translate the condition
∧T
i=1(Xi ∈ Ā)

to an algebraic terminology, and then we analyze it.

The translation to algebraic terminology. Let M be the transition matrix of G and denote
|V | = 2n = N . Pick X1 ∈ V uniformly at random. That is, the initial distribution over the
vertices is u = 1

N 1. Define an N ×N diagonal projection matrix B with B[x, x] = 1 if x ∈ Ā
and 0 otherwise. In this terminology, |〈1, Bu〉| is the probability a random element belongs
to Ā (and so is β). |〈1, BMBu〉| is the probability in a random walk of length two, both
samples belong to Ā. Similarly, |〈1, (BM)kBu〉| is the probability that in a random walk of
length k + 1 the walk is confined to the set Ā, i.e., all samples belong to Ā.

Reducing the analysis to understanding a single step : As B is a projection, B2 = B, and
so |〈1, (BM)kBu〉| = |〈1, (BMB)kBu〉|. But, |〈1, (BMB)TBu〉| ≤

∥∥(BMB)T
∥∥ ≤ ‖BMB‖T .

The claim will follow by proving ‖BMB‖ ≤ 1− γρ(A).

Claim 6 ([2]). Let G be an undirected regular graph on n vertices and let M be its transition
matrix. Then, M = (1− λ̄)J + λ̄E for some E with ‖E‖ ≤ 1 and J that is the normalized all-ones
matrix. I.e., M is a convex combination of J (that corresponds to a completely random walk) and
E (that is some arbitrary error matrix).

Proof. The first eigenvector of M is 1 (possibly normalized) with eigenvalue 1. 1 is also an eigen-
vector of J with eigenvalue 1. We conclude that 1 is a common eigenvector of M,J and E and
with eigenvalue 1 for all of them (check!). What about vectors in the orthogonal complement? Let
W⊥ denote all vectors perpendicular to 1, i.e., all x such that 〈x,1〉 = 0. Then Jx = 0. Also, W⊥

is invariant under M (why?) and thus W⊥ is invariant also under E. Hence, to bound the norm of

E, it is enough to limit our attention to W⊥. For v ∈W⊥, ‖Ev‖ = 1
λ̄
‖Mv‖ ≤ λ̄

λ̄
‖v‖ = ‖v‖. Thus,

‖E‖ ≤ 1.

Now, let us express BMB in this decomposition. We get

BMB = B((1− λ)J + λE)B = (1− λ)BJB + λBEB.

The BJB part is the part corresponding to a true random walk step, the other part is “junk”, and
indeed we easily see that ‖BEB‖ ≤ ‖B‖ ‖E‖ ‖B‖ ≤ 1. Thus, we are now reduced to analyzing
BJB, i.e., one true random walk step. For any x 6= 0, x =

∑
i xiei. Then, (BJBx)[i] = 1

N

∑
i∈Ā xi

if i ∈ Ā and 0 otherwise (check!). Thus, by Cauchy-Schwarz,

‖BJBx‖ =

√√√√√|Ā|
 1

N

∑
i∈Ā

xi

2

=

√
|Ā|
N2

∑
i∈Ā

xi ≤
√
|Ā|
N2

√
|Ā| ‖x‖ =

|Ā|
N

= ρ(Ā).

Together,

‖BMB‖ ≤ γρ(Ā) + 1− γ = 1− γρ(A).
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The two-sided case (i.e., approximating the density) is along the same ideas, but a bit more com-
plicated. The analysis may use the useful expander Chernoff bound.

Theorem 7 ([1]). Let G be an undirected D-regular graph with 1 = λ1 > λ2 ≥ . . . ≥ λn and
spectral gap γ = 1− λ̄(G) and let fi : V → [0, 1] for i ∈ [T ]. Take a random walk v1, . . . , vT and let
Xi be the random variable fi(vi). Denote µi = E[Xi] and µ̄ = 1

T

∑
i µi. Then,

Pr

[∣∣∣∣∣ 1

T

∑
i

Xi − µ̄

∣∣∣∣∣ ≥ ε
]
≤ 2e−

1
4
γε2T .
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