
0368-4283: Space-Bounded Computation 27/3/2018 – Lecture 4

Combinatorial Constructions of Expanders. The Zig-Zag product

Amnon Ta-Shma and Dean Doron

We want to construct an explicit family of D-regular expanders with spectral gap as large as
possible, or, at least, expanders with constant spectral gap and constant degree.

Definition 1. Let G = {Gk}k∈N be a family of (Nk, Dk)-graphs. We say G is explicit if for every
k, v ∈ [Nk] and i ∈ [Dk], RotGk

(v, i) can be computed in time poly(Nk, Dk). We say G is fully
explicit if RotGk

(v, i) can be computed in time poly(logNk, logDk) (that is, polynomial-time in the
input length).

Non-explicitly, most regular graphs are good expanders.

Theorem 2 ([1]). Let n, d ≥ 3. If G is a uniformly random d-regular undirected graph than with

high probability (which tends to 1 as n grows to infinity), λ̄(G) ≤ 2
√
d−1
d + o(1).

The above is nearly tight. Alon and Boppana proved that for every family {Gn}, where Gn is a

d-regular graph over n vertices, λ̄(G) ≥ 2
√
d−1
d − o(1) [2]. Graphs that achieve λ̄(G) = 2

√
d−1
d are

called Ramanujan.

There are very good number-theoretic constructions which are very explicit but hard to analyse.
For instance, for a prime q consider the graph G = (V = Fq, E) where x ∈ F?

q is connected to x+ 1,
x− 1 and x−1 and 0 is connected to itself, 1 and q − 1. The graph is 3-regular, fully explicit, and
has. constant spectral gap, but the proof is not easy. There are also explicit Ramanujan graphs.

We will see a combinatorial construction, following [3] which can be analysed with basic math.
The main advantage of the combinatorial construction will be revealed later, when we use it in
Reingold’s algorithm (and variants) to derandomized the probabilistic algorithm for USTCON.

1 Cayley Graphs over Abelian groups

Let H be a finite group. A subset S ⊆ H is symmetric if g ∈ S iff g−1 ∈ S.

Definition 3. Let H be a finite group and let S ⊆ H be symmetric. The Cayley graph Cay(H,S)
is the graph whose vertices are labeled with the elements from H and (a, b) is an edge iff a = bs−1

for some s ∈ S.

The graph is |S|-regular. If S is closed under inverse the graph is undirected. We will only analyse
the simple Abelian case. The non-Abelian case is much more interesting and can lead to degree D
Ramanujan graphs.

We consider two natural examples of Cayley graphs:

1. The undirected cycle over n vertices: H = Zn, S = {−1, 1}.

2. The n-dimensional hypercube: H = Zn
2 , S = {ei : i ∈ [n]}, where ei is the vector which is 1

in the i-th coordinate and 0 elsewhere.

1

If we construct a Cayley graph from a finite Abelian group, the eigenvectors are the characters of
the group and the eigenvalues can be described quite simply:

Lemma 4. Let H be a finite Abelian group and let χ : H → C be a character of H. Let S ⊆ H
be symmetric and let A be the normalized adjacency matrix of Cay(H,S). Then, χ ∈ CH is an
eigenvector of A with eigenvalue λ = 1

|S|〈χ, S〉, where we treat S as a vector in {0, 1}H .

Proof. We simply consider the i-th coordinate of Aχ, which is

(A · χ)(i) =
∑
j

A[i, j]χ(j) =
1

|S|
∑

j:ji−1∈S

χ(j)

=
1

|S|
∑
s

χ(si) =
1

|S|
∑
s

χ(s)χ(i) =
1

|S|
〈χ, S〉 · χ(i).

We can conclude that the eigenvalues 〈χ, S〉 are all the eigenvalues of A, as every character is an
eigenvector, they are linearly independent and there are exactly |H| of them (you can try proving
it yourself, or see the above reference). Observe that the eigenvectors of Cay(H,S) are independent
of the set S.

Notice that with logarithmic degree we can get constant gap. The obvious question is whether we
can get constant degree expanders with Cayley graphs. It turns out that with Abelian groups we
cannot, however there are infinite families of constant degree Cayley expanders over non-Abelian
groups but we will not cover them in the course.

Our next goal is to achieve a combinatorial construction of constant degree expanders.

2 Rotation maps

A labelling of a D-outregular graph G is an assignment of a number in [D] to every edge of G such
that the edges exiting every vertex have distinct labels. We say a labelling is consistent if for every
vertex all incoming edges have distinct labels. That is similar to labelling undirected graphs, and it
can be shown that every regular directed graph can be consistently labeled. Although working with
consistently labeled graph suffices for our current application, we consider a more general notion of
labelling, a two-way labelling, where every edge has two labels – one as an outgoing edge and one
as an ingoing edge. A graph together a two-way labelling can be specified by a rotation map.

Definition 5. Let G be a directed D-regular over N vertices. A rotation map for G, RotG :
[N] × [D] → [N] × [D] is defined as follows: RotG(v, i) = (w, j) if the i-th outgoing edge from v
leads to w, and this edge is the j-th incoming edge of w.

Notice that the rotation function is always a permutation. If G is undirected, we can view it as a
directed graph by replacing every undirected edge {u, v} with two directed edges (u, v) and (v, u).
We can insist that the outgoing label of (u, v) is the same as the incoming label of (v, u). The
resulting rotation map Rot of such a two-way labelling is not only a permutation but also an
involution, namely Rot2 is the identity.

Using two-way labelling instead of ordinary labelling has two advantages. First, even though every
regular directed graph has a consistent labelling, it seems to be infeasible finding it in logspace.

2

Second, some properties such as consistent labelling or being undirected may not be preserved
under some products so it would be easier to work with a more robust definition that does not
assume those properties.

Example 6. (Squaring) Say G is an (N,D, λ) graph with rotation map Rot. Then G2 is a
(N,D2, λ2) graph with rotation map Rot′ where Rot′(v; a1, a2) = (v′′, (a′2, a

′
1) where Rot(v, a1) =

(v′, a′1), Rot(v
′, a2) = (v′′, a′2).

Example 7. (Tensoring) Say G is an (N,D, λ) graph with rotation map Rot. Then G ⊗ G is
a (N2, D2, λ) graph with rotation map Rot′ where Rot′((v1, v2); a1, a2) = ((v′1, v

′
2), (a

′
1, a
′
2) where

Rot(v1, a1) = (v′1, a
′
1), Rot(v2, a2) = (v′2, a

′
2).

3 The Zig-Zag Product

3.1 The overall idea

We start with some constant sized (N0, D0, λ0 < 1)-graph G. Then:

1. We improve λ̄(G) by powering – G2. The drawback: Powering blows-up the degree.

2. We increase the number of vertices by tensoring – G⊗G. Tensoring preserves λ̄(G) however
also blows-up the degree.

We thus need a new graph operation that would:

• roughly preserve the number of vertices (since we can increase it with tensoring),

• roughly preserve λ̄(G) (since we can square), and,

• decreases the degree.

Then, morally, we can repeatedly apply:

1. Tensoring, to increase the number of vertices.

2. Powering, to increase the spectral gap.

3. The new operation that reduces the degree.

And so, we can potentially obtain an infinite family of constant degree expanders.

3.2 The replacement product

We begin with a product that takes a “large” D1-regular undirected graph G = (V,E) over N
vertices and a “small” D2-regular graph over D1 vertices H and produces a (D2 + 1)-regular graph
over ND1 vertices. The replacement product GrH goes as follows:

• Replace every vertex of G with a copy of H, called a “cloud” (and has its “intra-cloud edges”).
For every v ∈ [N] and i ∈ [D1], (v, i) is then a vertex of GrH.

3

• For e = {u, v} ∈ E such that v is the i-th neighbor of u and u is the j-th neighbor of v, we
have an “inter-cloud” edge {(u, i), (v, j)}.

Formally, we can describe the rotation map RotGrH((v, i), k) where k ∈ {0, 1, . . . , D2} as follows:

1. Let (v′, i′) = RotG(v, i).

2. If k > 0, let (i′, k′) = RotH(i, k).

3. If k = 0 then output ((v′, i′), 0). Else, output ((v, i′), k′).

3.3 The zig-zag product and its analysis

We now wish to “short-circuit” steps on the replacement product graph. Again, let G be an
(N,D1, λ1)-graph and let H be a (D1, D2, λ2)-graph, and we think of D2 � D1 and of H as an
expander. The zig-zag product G z©H goes as follows:

• The vertex set is the vertex set of GrH.

• There is an edge {(u, i), (v, j)} if (v, j) can be reached from (u, i) by taking a step in the
u-cloud, then a step between the clouds and then a step in the v-cloud. That is, we take one
intra-cloud step, one inter-cloud step and one intra-cloud step.

Is the above well-defined? I.e., is the graph an undirected one? Next, observe that the graph is
D2

2-regular. Is it connected?

Let us formally describe the rotation map RotG z©H((v1, v2), (i1, i2)):

1. Let (v′2, i
′
1) = RotH(v2, i1).

2. Let (v′1, v
′′
2) = RotG(v1, v

′
2).

3. Let (v′′′2 , i
′
2) = RotH(v′′2 , i2).

4. Output ((v′1, v
′′′
2), (i′2, i

′
1)).

We can also view the zig-zag product in the following way: We start with some vertex of GrH
and are given two instructions i1, i2 ∈ [D2]. The graph H is the one that dictates the intra-cloud
steps, whereas the intra-cloud step is deterministic.

The zig-zag product roughly inherits the degree of the smaller graph, which is good. But what
about the spectral gap? Does it preserve it?

Theorem 8. Let G be an (N,D1, λ1 = 1− γ1) and let H be a (D1, D2, λ2 = 1− γ2). Then, G z©H
is a (ND1, D

2
2, f(λ1, λ2)) where γ = 1− f(λ1, λ2) ≥ γ1γ22 .

Proof. We let A be the transition matrix of G, B be the transition matrix of H and M be the
transition matrix of G z©H. Same as we did for in the analysis of the derandomized squaring
product, let Ȧ be the permutation corresponding to RotG and let B̃ = IN ⊗B. Then,

M = B̃ȦB̃.

4

Again, write B = (1 − λ2) 1
D1
J + λ2E for some E with ‖E‖ ≤ 1 and denote J̃ = IN ⊗ 1

D1
J and

Ẽ = IN ⊗ E, so B̃ = (1− λ2)J̃ + Ẽ, and so

M = ((1− λ2)J̃ + λ2Ẽ)Ȧ((1− λ2)J̃ + λ2Ẽ)

= γ22 J̃ȦJ̃ + F,

where F = λ2(1− λ2)(J̃ȦẼ + ẼȦJ̃) + λ22ẼȦẼ. As ‖Ẽ‖, ‖Ȧ‖, ‖J̇‖ ≤ 1 we get

‖F‖ ≤ 2λ2(1− λ2) + λ22 = 2λ2 − λ22 = 1− (1− 2λ2 + λ22) = 1− γ22 .

Also, observe that J̃ȦJ̃ = A⊗ 1
D1
J (why?). Thus,

λ̄(G z©H) ≤ γ22 · λ̄(G) ·
∥∥∥∥ 1

D1
J

∥∥∥∥+ ‖F‖ = γ22λ1 + 1− γ22

so 1− λ̄(G z©H) ≥ γ22(1− λ1) = γ22γ1.

4 Constructing constant-degree expanders

4.0.1 An explicit family of expanders

Fix a large enough constant D. We start with a constant-sized expander.

Theorem 9. There exists a (D4, D, 18)-graph.

Although a brute-force search is possible (why?), we will give an explicit construction of such an
expander in the homework assignment.

Let H be the (D4, D, 18)-graph and let G1 = H2. For k ≥ 1, define

Gk+1 = G2
k z©H

Lemma 10. For every k ≥ 1, Gk is a (D4k, D2, 12)-graph.

Proof. By induction on k. For k = 1 it is guaranteed by Theorem 4.0.1 and the squaring. Now,
assume Gk is a (D4k, D2, 12)-graph. Thus, G2

k is a (D4k, D4, 14)-graph. Recall that H is a (D4, D, 18)-
graph, so by the zig-zag analysis, Gk+1 is a

(D4(k+1), D2, 1− γ)

graph, for γ ≥ (1− 1
8)2(1− 1

4) > 1
2 , as desired.

How explicit is the family {Gk}k? Say we computed the rotation map of Gk and wish to compute
the rotation map of Gk+1. Recall that RotGt+1((v, a), (i1, i2)) where v ∈ [D4k], a ∈ [D4] and
i1, i2 ∈ [D], is given by:

1. Compute (a′, i′1) = RotH(a, i1), where a′ ∈ [D4] and i′1 ∈ [D].

2. Compute (v′, a′′) = RotG2
k
(v, a′), where v′ ∈ [D4k] and a′′ ∈ [D4].

5

3. Compute (a′′′, i′2) = RotH(a′′, i2).

4. Output ((v′, a′′′), (i′2, i
′
1)).

To compute (v′, a′′) = RotG2
k
(v, a′), denote a′ = (a′1, a

′
2) ∈ [D2]2, compute (w, a′′1) = RotGk

(v, a′1),

(v′, a′′2) = RotGk
(w, a′2) and set a′′ = (a′′2, a

′′
1).

We want to prove that our family is indeed explicit. Let T (k) be the time needed to compute
RotGk

. Thus,
T (k) = 2T (k − 1) +O(1),

where the O(1) factor stands for the computations of RotH . Thus, T (k) = O(2k) and since the

number of vertices is N = D4k, T (k) = O(2
1
4
logD N) = poly(N).

4.0.2 A fully explicit family of expanders

Can we do better in terms of explicitness? Let H a (D8, D, 18)-graph and let G1 = H2. For k ≥ 1,
define

Gk+1 = (Gk ⊗Gk)2 z©H.

Lemma 11. For every k ≥ 1, Gk is a (Nk, D
2, 12)-graph where Nk ≥ D2k .

Proof. Assume Gk is an (Nk, D
2, 12)-graph. Thus, Gk⊗Gk is an (N2

k , D
4, 12)-graph and so (Gk⊗Gk)2

is an (N2
k , D

8, 14)-graph. Recall that H is a (D8, D, 18)-graph, so by the zig-zag analysis, Gk+1 is a

(Nk+1 = N2
kD

8, D2, 1− γ)

graph, for γ ≥ (1− 1
8)2(1− 1

4) > 1
2 . Finally, note that Nk+1 ≥

(
D2k

)2
D8 ≥ D2k+1

, as desired.

Again, we wish to examine the construction’s time complexity. We skip explicitly writing all the
steps in computing RotGk

, but do it yourself! The recurrence relation for the time complexity is
now

T (k) = 4T (k − 1) +O(1),

giving T (k) = O(4k). As N ≥ D2k we get T (k) = poly(logN), as desired. This family is fully
explicit.

References

[1] Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. American
Mathematical Soc., 2008.

[2] Alon Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207–210, 1991.

[3] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Annals of mathematics, pages 157–187, 2002.

6

