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Derandomized squaring

Amnon Ta-Shma and Dean Doron

1 The Derandomized-Squaring Product

There is an obvious way to increase the connectivity of graphs – graph squaring (or more generally,
graph powering). If G is our original graph, than G2 is a graph in which every edge corresponds to
a path of length 2 in G. Iterating log n times, in Gn we can in fact check whether s is connected to
t in G by checking whether (s, t) is an edge in Gn. As we saw squaring increases both the spectral
gap and the degree, if G is undirected degree D than Gt is degree Dt and λ̄(Gt) = λ̄(G)t. Thus,
although Gn is extremely well-connected, the degree of each vertex can be exponentially-large so
even enumerating over all neighbours cannot be done in logspace. We will give a solution to that
problem, due to Rozenman and Vadhan [1].

1.1 Preliminaries

Even though we will only solve undirected st-connectivity, it will be useful to work with regular
directed graphs. Consequently, we will have to adapt our spectral definitions.

Definition 1. We say a directed graph G is D-regular if the in-degree as well as the out-degree of
every vertex is D.

Let M be the transition matrix of a directed D-regular graph over N vertices and let u = 1
N 1, so

by regularity Mu = u.

Definition 2. Let G be a directed regular graph with transition matrix M . We define

λ̄(G) = max
x⊥u

‖Mx‖
‖x‖

and γ(G) = 1 − λ̄(G). We say G is a (N,D, λ)-graph if G is a directed D-regular graph over N
vertices and λ̄(G) ≤ λ.

In the regular directed case as well, λ̄(G) measures the rate at which a random walk overG converges
to the stationary distribution u. As usual, we call graphs with λ̄(G) ≤ 1 − Ω(1) expanders. If G
is undirected than λ̄(G) is the second largest eigenvalue in magnitude of M . In regular directed
graphs, it equals the second singular value of M , i.e., the square root of the second largest eigenvalue
of M †M (prove!).

A random step on G can be viewed as going according to the uniform distribution (or, taking a
step in a clique) with probability 1− λ̄(G) and “not doing too much harm” with probability λ̄(G).
We already proved it for the undirected case, and the same result holds here as well (prove!).

Claim 3. Let M be the transition matrix of an (N,D, λ)-graph. Then, M = (1− λ) 1
N J + λC for

some C with ‖C‖ ≤ 1.
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1.2 The derandomized-squaring product

Let G be an undirected D1-regular graph. One way to view the squaring G2 is that for every vertex
v in G we place a clique on its D1 neighbors. The degree obviously becomes D2

1. To “derandomize”
this approach we use a degree-D2 expander H on D1 vertices and place it instead of a clique on
the D1 neighbours of every vertex v. Thus, we pick one edge from the expander, and use its two
endpoints as the two instructions for G2. The resulting graph, GsH, will have degree D1D2, which
is a significant gain if D2 � D1. The rotation map of GsH is formally defined as follows.

Definition 4. Let G be a directed D1-regular graph on N vertices with a two-way labelling and let
H be a directed D2-regular graph on D1 vertices with a two-way labelling. The graph GsH has
rotation map RotGsH : [N ] × ([D1] × [D2]) → [N ] × ([D1] × [D2]) so that RotGsH(v0, (a, b)) is
defined as follows:

1. Let (v1, a
′) = RotG(v, a).

2. Let (a′′, b′) = RotH(a′, b).

3. Let (v2, a
′′′) = RotG(v1, a

′′).

4. Output (v2, (a
′′′, b′)).

To get a better understanding of derandomized squaring product, note the following phenomena:

• In general, GsH may not produce an in-regular graph, but it will do so provided G is
consistently labelled. If G and H are consistently labeled then GsH is also consistently
labeled.

• Even if G and H are consistently labeled and undirected, GsH need not be undirected.

We will now prove that although the derandomized squaring graph has smaller degree than D2
1, it

improves connectivity almost just as well as ordinary squaring as long as H is a good expander.

Theorem 5. Let G be an (N,D1, λ1)-graph with a two-way labelling and let H be a (D1, D2, λ2)-
graph with a two-way labelling. Then, GsH is an (N,D1D2, f(λ1, λ2))-graph, where

f(λ1, λ2) = 1− (1− λ21)(1− λ2) ≤ λ21 + λ2.

Notice that when λ2 is very small, f(λ1, λ2) approaches λ21 which is what we would have gotten for
G2.

Proof. Let M be the transition matrix of GsH, and we wish to bound ‖Mv‖ for every v ⊥ u = 1
N 1.

In order to translate GsH to operators notation, we think of a random step on GsH from a vertex
v:

1. We choose a uniformly at random from [D1] and go to state (v, a).

2. We apply (v1, a
′) = RotG(v, a).

3. We choose b uniformly at random from [D2], compute (a′′, b′) = RotH(a′, b) and go to state
(v1, a

′′).
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4. We apply (v2, b
′) = RotG(v1, a

′′).

5. Output v2.

Step (1) corresponds to a linear mapping L ∈ RND1×N that lifts probability distributions on [N ]
to probability distributions on [N ] × [D1] by spreading the weights uniformly over each “cloud”.
Namely, Lv = v ⊗ u.

Step (2) corresponds to applying the permutation RotG, and we let Ȧ be the corresponding per-
mutation matrix.

Step (3) corresponds to applying the matrix H̃ = IN ⊗MH where MH is the transition matrix of
H (i.e., we take a random step over the expander in each cloud).

Step (4) again corresponds to Ȧ.

Step (5) corresponds to a linaer mapping P ∈ RN×ND1 that projects probability distributions on
[N ]× [D1] to probability distributions on [N ] by summing the weights of each cloud.

Hence,
M = PȦH̃ȦL.

By Claim 3 we can write MH = (1 − λ2)
1
D1
J + λ2C for some C with ‖C‖ ≤ 1. Thus, also

H̃ = (1− λ2)(IN ⊗ 1
D1
J) + λ2(IN ⊗ C)

def
= (1− λ2)J̃ + λ2C̃. Therefore,

M = (1− λ2)PȦJ̃ȦL+ λ2PȦC̃ȦL.

Claim 6. Let A be the transition matrix of G. Then, PȦJ̃ȦL = A2.

Proof. The operator PȦJ̃ȦL corresponds to using the clique instead of H, which amounts to
computing the actual squaring. Formally, note that LP = J̃ so PȦJ̃ȦL = PȦLPȦL. The claim
follows from the simple observation that PȦL = A.

Thus, M = (1−λ2)A2 +λ2PȦC̃ȦL. Since ‖L‖ = 1√
D1

, ‖P‖ =
√
D1,

∥∥∥Ȧ∥∥∥ = 1 and ‖C‖ ≤ 1 we get

that
∥∥∥PȦC̃ȦL∥∥∥ ≤ 1. Therefore, M = (1 − λ2)A2 + λ2D for some matrix D with ‖D‖ ≤ 1. This

implies that λ̄(GsH) ≤ (1− λ2)λ21 + λ2 = f(λ1, λ2), as desired.

We record the following easy corollary:

Corollary 7. For γ < 1
4 , 1− f(1− γ, 1

100) ≥ 3
2γ.

The way to think about the above claim is that as long as we use an expander with λ2 = 1
100

(and not smaller), the spectral gap increases by a constant factor whenever we apply derandomized
squaring, as long as it’s not too large to begin with.
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