0368-4283: Space-Bounded Computation

Derandomized squaring

Amnon Ta-Shma and Dean Doron

1 The Derandomized-Squaring Product

There is an obvious way to increase the connectivity of graphs – graph squaring (or more generally, graph powering). If G is our original graph, than G^2 is a graph in which every edge corresponds to a path of length 2 in G. Iterating log n times, in G^n we can in fact check whether s is connected to t in G by checking whether (s, t) is an edge in G^n . As we saw squaring increases both the spectral gap and the degree, if G is undirected degree D than G^t is degree D^t and $\bar{\lambda}(G^t) = \bar{\lambda}(G)^t$. Thus, although G^n is extremely well-connected, the degree of each vertex can be exponentially-large so even enumerating over all neighbours cannot be done in logspace. We will give a solution to that problem, due to Rozenman and Vadhan [1].

1.1 Preliminaries

Even though we will only solve *undirected* st-connectivity, it will be useful to work with regular directed graphs. Consequently, we will have to adapt our spectral definitions.

Definition 1. We say a directed graph G is D-regular if the in-degree as well as the out-degree of every vertex is D.

Let M be the transition matrix of a directed D-regular graph over N vertices and let $u = \frac{1}{N}\mathbf{1}$, so by regularity Mu = u.

Definition 2. Let G be a directed regular graph with transition matrix M. We define

$$\bar{\lambda}(G) = \max_{x \perp u} \frac{\|Mx\|}{\|x\|}$$

and $\gamma(G) = 1 - \overline{\lambda}(G)$. We say G is a (N, D, λ) -graph if G is a directed D-regular graph over N vertices and $\overline{\lambda}(G) \leq \lambda$.

In the regular directed case as well, $\bar{\lambda}(G)$ measures the rate at which a random walk over G converges to the stationary distribution u. As usual, we call graphs with $\bar{\lambda}(G) \leq 1 - \Omega(1)$ expanders. If Gis undirected than $\bar{\lambda}(G)$ is the second largest eigenvalue in magnitude of M. In regular directed graphs, it equals the second singular value of M, i.e., the square root of the second largest eigenvalue of $M^{\dagger}M$ (prove!).

A random step on G can be viewed as going according to the uniform distribution (or, taking a step in a clique) with probability $1 - \bar{\lambda}(G)$ and "not doing too much harm" with probability $\bar{\lambda}(G)$. We already proved it for the undirected case, and the same result holds here as well (prove!).

Claim 3. Let M be the transition matrix of an (N, D, λ) -graph. Then, $M = (1 - \lambda)\frac{1}{N}J + \lambda C$ for some C with $||C|| \leq 1$.

1.2 The derandomized-squaring product

Let G be an undirected D_1 -regular graph. One way to view the squaring G^2 is that for every vertex v in G we place a clique on its D_1 neighbors. The degree obviously becomes D_1^2 . To "derandomize" this approach we use a degree- D_2 expander H on D_1 vertices and place it instead of a clique on the D_1 neighbours of every vertex v. Thus, we pick one edge from the expander, and use its two endpoints as the two instructions for G^2 . The resulting graph, $G \otimes H$, will have degree $D_1 D_2$, which is a significant gain if $D_2 \ll D_1$. The rotation map of $G \otimes H$ is formally defined as follows.

Definition 4. Let G be a directed D_1 -regular graph on N vertices with a two-way labelling and let H be a directed D_2 -regular graph on D_1 vertices with a two-way labelling. The graph $G \otimes H$ has rotation map $Rot_{G \otimes H} : [N] \times ([D_1] \times [D_2]) \rightarrow [N] \times ([D_1] \times [D_2])$ so that $Rot_{G \otimes H}(v_0, (a, b))$ is defined as follows:

- 1. Let $(v_1, a') = Rot_G(v, a)$.
- 2. Let $(a'', b') = Rot_H(a', b)$.
- 3. Let $(v_2, a''') = Rot_G(v_1, a'')$.
- 4. Output $(v_2, (a''', b'))$.

To get a better understanding of derandomized squaring product, note the following phenomena:

- In general, $G \otimes H$ may not produce an in-regular graph, but it will do so provided G is consistently labelled. If G and H are consistently labeled then $G \otimes H$ is also consistently labeled.
- Even if G and H are consistently labeled and undirected, $G \otimes H$ need not be undirected.

We will now prove that although the derandomized squaring graph has smaller degree than D_1^2 , it improves connectivity almost just as well as ordinary squaring as long as H is a good expander.

Theorem 5. Let G be an (N, D_1, λ_1) -graph with a two-way labelling and let H be a (D_1, D_2, λ_2) -graph with a two-way labelling. Then, GSH is an $(N, D_1D_2, f(\lambda_1, \lambda_2))$ -graph, where

$$f(\lambda_1, \lambda_2) = 1 - (1 - \lambda_1^2)(1 - \lambda_2) \leq \lambda_1^2 + \lambda_2$$

Notice that when λ_2 is very small, $f(\lambda_1, \lambda_2)$ approaches λ_1^2 which is what we would have gotten for G^2 .

Proof. Let M be the transition matrix of $G \otimes H$, and we wish to bound ||Mv|| for every $v \perp u = \frac{1}{N}\mathbf{1}$. In order to translate $G \otimes H$ to operators notation, we think of a random step on $G \otimes H$ from a vertex v:

- 1. We choose a uniformly at random from $[D_1]$ and go to state (v, a).
- 2. We apply $(v_1, a') = Rot_G(v, a)$.
- 3. We choose b uniformly at random from $[D_2]$, compute $(a'', b') = Rot_H(a', b)$ and go to state (v_1, a'') .

- 4. We apply $(v_2, b') = Rot_G(v_1, a'')$.
- 5. Output v_2 .

Step (1) corresponds to a linear mapping $L \in \mathbb{R}^{ND_1 \times N}$ that lifts probability distributions on [N] to probability distributions on $[N] \times [D_1]$ by spreading the weights uniformly over each "cloud". Namely, $Lv = v \otimes u$.

Step (2) corresponds to applying the permutation Rot_G , and we let \dot{A} be the corresponding permutation matrix.

Step (3) corresponds to applying the matrix $\tilde{H} = I_N \otimes M_H$ where M_H is the transition matrix of H (i.e., we take a random step over the expander in each cloud).

Step (4) again corresponds to \dot{A} .

Step (5) corresponds to a linear mapping $P \in \mathbb{R}^{N \times ND_1}$ that projects probability distributions on $[N] \times [D_1]$ to probability distributions on [N] by summing the weights of each cloud. Hence,

$$M = P\dot{A}\tilde{H}\dot{A}L.$$

By Claim 3 we can write $M_H = (1 - \lambda_2) \frac{1}{D_1} J + \lambda_2 C$ for some C with $||C|| \leq 1$. Thus, also $\tilde{H} = (1 - \lambda_2)(I_N \otimes \frac{1}{D_1} J) + \lambda_2(I_N \otimes C) \stackrel{\text{def}}{=} (1 - \lambda_2)\tilde{J} + \lambda_2\tilde{C}$. Therefore,

$$M = (1 - \lambda_2) P \dot{A} J \dot{A} L + \lambda_2 P \dot{A} C \dot{A} L.$$

Claim 6. Let A be the transition matrix of G. Then, $P\dot{A}\tilde{J}\dot{A}L = A^2$.

Proof. The operator $P\dot{A}\tilde{J}\dot{A}L$ corresponds to using the clique instead of H, which amounts to computing the actual squaring. Formally, note that $LP = \tilde{J}$ so $P\dot{A}\tilde{J}\dot{A}L = P\dot{A}LP\dot{A}L$. The claim follows from the simple observation that $P\dot{A}L = A$.

Thus, $M = (1 - \lambda_2)A^2 + \lambda_2 P\dot{A}\tilde{C}\dot{A}L$. Since $||L|| = \frac{1}{\sqrt{D_1}}$, $||P|| = \sqrt{D_1}$, $||\dot{A}|| = 1$ and $||C|| \le 1$ we get that $||P\dot{A}\tilde{C}\dot{A}L|| \le 1$. Therefore, $M = (1 - \lambda_2)A^2 + \lambda_2 D$ for some matrix D with $||D|| \le 1$. This implies that $\bar{\lambda}(G \otimes H) \le (1 - \lambda_2)\lambda_1^2 + \lambda_2 = f(\lambda_1, \lambda_2)$, as desired.

We record the following easy corollary:

Corollary 7. For $\gamma < \frac{1}{4}$, $1 - f(1 - \gamma, \frac{1}{100}) \ge \frac{3}{2}\gamma$.

The way to think about the above claim is that as long as we use an expander with $\lambda_2 = \frac{1}{100}$ (and not smaller), the spectral gap increases by a constant factor whenever we apply derandomized squaring, as long as it's not too large to begin with.

References

 Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 436–447. Springer, 2005.