
0368-4283: Space-Bounded Computation 24/4/2018 – Lecture 6

USTCONN ∈ L via Derandomized-Squaring

Amnon Ta-Shma and Dean Doron

1 USTCONN ∈ L via Derandomized-Squaring

We will solve USTCONN by increasing the connectivity of the graph (more accurately, of every
connected component) by repeatedly using derandomized squaring. Iterating derandomized squar-
ing highly increases connectivity, as we saw in the last section, and the degree blowup is relatively
small.

Recall that had we computed Gn exactly, an algorithm for undirected st-connectivity would be
just to enumerate over all neighbors of s. When λ̄(G) is small enough, the same technique can be
applied.

Claim 1. Let G be an (N,D, 1
2N2 )-graph. Then, G contains an edge between any pair of vertices.

More generally, for a pair of vertices v, w, the probability that a random neighbor of v is w is at
least 1

N −
1
N2 .

The latter part of the above claim will be useful once we talk about pseudorandom generators.

Proof. Let M be the transition matrix of G and let u = 1
N 1 be its stationary distribution. The

initial probability distribution is ev, and so

‖Mev − u‖∞ ≤ ‖Mev − u‖ = ‖M(ev − u)‖ ≤ λ̄(G) ‖ev − u‖ ,

where the last inequality follows from the fact that ev−u ⊥ 1. As ‖ev − u‖ ≤ 2, we are finished.

1.1 Phase I

We start with some 4-regular undirected graph G with a loop on each vertex. This captures the
most general case (why?). We already saw that λ̄(G) ≥ 1− 1

4N2 . In phase I, we apply derandomized
squaring for m0 = O(logN) times with a constant degree expander and obtain Gm0 – a graph with
a constant spectral gap that preserves the connectivity of the original graph.

We begin with a technical step. Take G to some constant power q. The degree of G1 = Gq is
Q = 4q and q is chosen so that there exists a sequence Hm of (Qm, Q, 1

100) graphs for every m
(recall that we can hope for degree ≈ 1

λ̄2
). Such family of graphs explicitly exists, in the sense that

given a vertex v ∈ [Q]m and label x ∈ [Q] we can compute v[x] in space O(m).

Theorem 2. Set m0 = O(logN) and for every i ∈ [m0 − 1] define Gi+1 = GisHi. Then,
λ̄(Gm0) ≤ 3

4 .

Proof. We start with γ(G1) ≥ 1
4N2 . By Corollary 7 of the previous lecture, it follows that

γ(Gi+1) ≥ γ(Gi) ·
3

2
≥
(

3

2

)m
γ(G1) ≥

(
3

2

)m 1

4N2
,

1



as long as γ(Gi) <
1
4 . Choosing m0 to be a large enough multiplicity of logN will give us λ̄(Gm0) ≤

3
4 .

1.2 Phase II

We need to keep increasing the spectral gap, but we cannot do that with a constant degree expander
(why?). In the second stage, we each time square the degree of the H expander we use, and we
keep doing that log logN + O(1) times. We end up with a graph with polynomial degree and
polynomially small second largest eigenvalue. It is then enough to just over all the neighbours of
s, and we show this can be done in O(logN) space.

We define the next family of expanders,

H ′m =
(
Hm0−1+2m−m0

)2m−m0

for m ≥ m0. So, every H ′m is a(
Qm0−1+2m−m0

, Q2m−m0
, µm =

(
1

100

)2m−m0
)

graph. Neighbors in H ′m are again explicit, and can be computed in space O(m+ 2m−m0). Recall
that Gm0 is an (N,Qm0 , 3

4)-graph.

Theorem 3. Set m1 = m0 + log logN + O(1) and for every i ∈ {m0, . . . ,m1 − 1} define Gi+1 =
GisH ′i. Then, the degree of Gm1 is polynomial in N and λ̄(Gm1) ≤ 1

2N2 .

Proof. Observe that the degree of Gm0+i is Qm0+
∑i−1

k=0 2k = Qm0+2i−1, so the degree of Gm1 is
QO(logN) = poly(N).

For the bound on λ̄(Gm1), we will prove by induction that λ(Gm0+i) ≤ 64
65 · (7/8)2i and the theorem

will follow. Indeed, for i = 0 the claim holds. Now, by Theorem 5 of the previous lecture,

λ̄(Gm0+i+1) ≤ λ̄(Gm0+i)
2 + µm0+i ≤

(
1 +

1

64

)
λ̄(Gm0+i)

2 ≤ 64

65

(
7

8

)2i+1

,

where we used the fact that µm0+i = (1/100)2i ≤ 1
64

(
64
65(7/8)2i

)2
.

The fact that derandomized squaring preserves the connectivity of our original graph (that is, s is
connected to t in G iff s is connected to t in Gi for every i) simply follows from the fact that our
original graph has self loops (verify!).

1.3 The space complexity

The next theorem will finish our analysis.

Theorem 4. For every vertex s, the neighbours of s in Gm1 are computable in space O(logN).

2



Proof. (Sketch). Edge labels in Gi are of the form yi = (y1, a1, . . . , ai−1) where y1 is an edge label
in G1 and ai is an edge label in Gi. Given v ∈ [N ] and yi, we want to compute RotGi(v, yi).

The algorithm: We follow the recursive definition of RotGi except that we do not use recursive calls
(that blow up the stack) but instead use a loop (where it is easier to see what is going on) and we
keep a depth i tree of arity 3. Each node (except for a leaf) has a left ”G” son, middle ”H” son
and right ”G” son, and in the loop we remember where we are on the tree. When:

• When we are at a leaf, we apply RotG and return to the father.

• When we are at a ”H” son we apply RotH at a prefix whose length corresponds to the level
of the tree we are in (work out the details!) and return to the father.

• When we are at a ”G” vertex, we go down first to its left son, when we return we go to the
middle son, and when we return to the right son. When we return to the root we half.

Now it is easy to see that the space complexity is O(logN), needed to keep where we are on the tree,
plus the space needed to do one application of RotG and and one application (the most expansive)
of RotHi .

Notice that during the computation we write (again and again) on the register that initially stored
ȳi, seemingly erasing information. However, since the Rot operator is reversible, this is a reversible
in-place computation, and if we wish we can always recover information we had before.

Another point to notice is that if RotG(v, a) = (v[a], φ(a)) for some function φ that does not depend
on v (this, e.g., happens in a Cayley graph), then RotGi(y1, a1, . . . , ai−1) open to a sequence of
instructions that is independent of yi, that is then applied on the situation where y1 is the initial
vertex. The length of that sequence is 2i. Also, given b = (b0, . . . , bi−1) the b’th symbol in that
sequence can be computed in O(logN) space (do that!). We will get to that point in the next
lecture when we discuss PRG.

3


