
0368-4283: Space-Bounded Computation 1/5/2018 – Lecture 7

Universal Traversal and Exploration Sequence

Amnon Ta-Shma and Dean Doron (Scribes: Eliran Kachlon)

1 Universal Traversal Sequence

1.1 Reminder

In the previous lecture we’ve seen that USTCON ∈ L. Shortly, given an undirected graph G of
degree D and two vertices s and t, we’ve used a known explicit construction of degree d expander’s
family {Hi}i to define G0 = G and

Gi = Gi−1 s©Hi−1,

for every i 6 m0 = O(log n). Then, for i > m0, we defined the following family of expanders

H ′i = (Hm0−1+2i−m0)2
i−m0

,

and the graphs
Gi = Gi−1 s©H ′i−1.

Finally, we looked at Gm for m = m0+log log n+O(1) and claimed that the connected components
of G and Gm are identical, and also that if s is connected to t in G then s is a neighbor of t in Gm.
Finally, we argued that we can iterate over all neighbors of s in Gm in logarithmic space.

Note that for every vertex v in Gm, every edge-label of v is of the form

(σ, i0, . . . , im0 , im0+1, . . . , im),

where σ ∈ [D], i0, . . . , im0 ∈ [d] and so on. We’ve also seen that computing

RotGm(v, (σ, i0, . . . , im0 , im0+1, . . . , im))

can be though of as an in-order walk on a trinary-tree, where each node represents a computation,
and the computations on the leaves correspond to a sequence of walking instructions on G that
takes us from s to t.

1.2 Universal Traversal Sequence

Definition 1. A labelled graph is locally-invertible if

RotG(v, i) = (v[i], φ(i)),

for some permutation φ.

Observation 2. If G is φ-locally-invertible then the generated sequence of instructions that takes
us from s to t does not depend on s.

1

Definition 3. Let F be a family of D-regular labelled graphs. We say that the string σ =
(σ1, . . . , σT) ∈ [D]T is universal traversal sequence (UTS) for F if for every G ∈ F and every
vertex v of G, the walk σ starting at v will visit all the graph’s vertices.

Claim 4. Let F be the family of undirected D-regular labelled graphs which are φ-locally invertible.
Then there exists a logspace construction of UTS for F .

Proof. From the observation we see that for every graph G ∈ F , every vertex v, and every edge-
label ī = (σ, i0, . . . , im0 , im0+1, . . . , im), the sequence of instructions that are generated by computing
RotGm(v, ī) is independent of v. Hence, we can simply write RotGm (̄i). Moreover, note that the
output of RotGm (̄i) is some edge-label ī′, and RotGm (̄i′) = ī.

This implies the following algorithm: iterate over all possible edge-labels ī, and for each one compute
RotGm (̄i), and while computing, print to the output tape the corresponding sequence of instructions
generated by the computation of RotGm . After computing RotGm (̄i) the work-tape has changed
to some other edge-label ī′, for which we compute RotGm (̄i′) and print to the output tape the
corresponding sequence of instructions. Now the work-tape is once again ī and we move to the next
edge-label.

Note that the above can be implemented in logarithmic space, and that if the sequence of instruc-
tions that corresponds to ī goes from v to u, then the sequence of instructions that corresponds
to ī′ goes from u to v. This implies that the whole sequence, when starting at some vertex v of
G, repeatedly goes (on G!) from v to some neighbor of v in Gm, and then back to v. Since every
vertex in the connected component of v in G is a neighbor of v in Gm it follows that the whole
sequence visits every vertex in the connected component of v, as required.

1.3 Generalization

In the following generalization we will look at D-regular digraphs which are consistently labelled.

Definition 5. A labelled D-regular graph is consistently labelled if for every v ∈ V and every
i ∈ [D] there exists exactly one neighbor w s.t. w[i] = v.

Claim 6. Let G be a D-regular digraph. Then

1. ‖G‖ 6 1.

2. The all 1’s vector is an eigenvector with eigenvalue 1.

3. Let V ⊥ be the orthogonal subspace to the span of the all 1’s vector. Then V ⊥ is invariant
under G.

For such a D-regular digraph we define the rotation map Rot : V × [D]→ V × [D] by Rot(v, i) =
(v[i], i). Note that if G is consistently labelled then RotG is a permutation.

Using the above definition of the rotation map for digrpahs, we can define G s©H in the same way
as before, and note that now it corresponds to picking and edge of H at random and using both
ends as edge-labels in G. Formally, for v ∈ V , σ ∈ [D] and i ∈ [d] we have

RotG s©H(v, (σ, i)) = (v′′, (σ, i))

where RotG(v, σ) = (v′, σ), RotH(σ, i) = (σ′, i) and RotG(v′, σ′) = (v′′, σ′).

The following claims follow by similar proofs to those we saw in the last lecture:

2

Claim 7. If G is a connected D-regular digraph then λ(G) > 1/n4.

Claim 8. If G is a connected D-regular digraph then λ(Gm) > 1− 1/10n.

Corollary 9. If s is connected to t in G then s is a neighbor of t in Gm.

2 Universal Exploration Sequence

Let G be a D-regular undirected graph. We’ve seen that one way of walking on the graph is keeping
in memory only the current vertex v where we stand at, and given an instruction σ ∈ [D] simply
walk to the σ neighbor of v.

Another way of walking on the graph is keeping in memory, in addition to the vertex v, also v’s label
of the last edge (u, v) that we’ve just traversed. If this label is τ and we are given an instruction
σ ∈ [D], then we simply traverse the edge whose label is τ + σ mod D. This kind of walk is called
exploration sequence.

Definition 10. Let F be a family of D-regular undirected labelled graphs. We say that σ =
(σ1, . . . , σT) ∈ [D]T is a universal exploration sequence (UES) for F if for every G ∈ F and
starting edge e, the walk obtained by σ visits all the edges of the graph.

Claim 11. The exists a logspace construction of UES.

We will prove the above claim in HW. One way to prove it is using the construction of UTS for
regular locally-invertible graphs that we’ve seen. Another way is that given an undirected D-regular
graph G, we can construct a graph L(G) whose vertices are the (directed) edges (i, j) (i.e. for every
undirected edge {i, j} in G there are two vertices (i, j) and (j, i)), and a vertex (i, j) is connected
to (j, k) iff {i, j} and {j, k} are edges of G. Note that every labelling of the neigbors in G induces
a labelling on the neighbors in L(G), and we claim that L(G) is consistently labelled.

3 Some Words on Reingold’s Proof that USTCON ∈ L

Now we will shortly describe Reingold’s proof that USTCON ∈ L which we will also see in HW.
Let G be a (wlog) D2-regular undirected graph with self-loops on every vertex. Let H be a fixed
[D4, D, 1/4]-graph. We define G0 = G and

Gi+1 = G2
i z©H.

Note that squaring improves the gap but also increases the degree, while the zig-zag product reduces
the degree back to D2 but also slightly decreases the gap (and also, as a side effect, increases the
number of vertices). Since the gap of G0 is non-negligible, it can be shown that for m = O(log n)
we have gap(Gm) > 1/18. Note that Gm is a constant degree graph with polynomial-number of
vertices, and that every node sm in the cloud that corresponds to s in Gm is connected to any node
tm in the cloud that corresponds to t in Gm iff s is connected to t in G. Hence all that remains is
to try all paths of length O(log n) in Gm from some sm to some tm, and we can show that this can
be implemented in logarithmic space.

3

4 Extractors

Definition 12. Let X be a distribution on {0, 1}n. We say that X is a k-source if for every
a ∈ Supp(X), Pr[X = a] 6 2−k. Equivalently, X is a k-source if H∞(X) > k where H∞(X) :=
log 1

maxa Pr[X=a] .

Some examples:

1. If X is the uniform distribution on {0, 1}n then X is an n-source, and we have H∞(X) = n.

2. If X is 0 with probability 1/2 and otherwise uniform on {0, 1}n \ {0n} then H∞(X) = 1.

Claim 13. Let f : {0, 1}n → {0, 1}s and let X be the uniform distribution over {0, 1}n. Then for
every ε > 0,

Pr
X

[H∞(X|f(X)) 6 n− s− log(1/ε)] 6 ε.

Intuitively, the above claim says that if f compresses n bits to s bits, then with high probability
knowing f(X) reduces only about s bits of entropy from X.

We would like to have a function Ext : {0, 1}n → {0, 1}m s.t. given a k-source X, Ext(X) will
be close to Um (we can think of Ext as a “hash function”). Note that such a function does not
exist: Assume that we only want one random bit (i.e. m = 1) from an (n − 1)-source, and let
Ext : {0, 1}n → {0, 1}. Assume wlog that 0 has at least 2n−1 preimages in Ext, and define X to
be the random distribution over Ext−1(0). Then X is an (n− 1)-source, but Ext(X) ≡ 0.

Hence we use a weaker definition:

Definition 14. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called an (k, ε)-extractor if for
every k-source X we have

|Ext(X,Ud)− Um|1 6 ε.

An intuitive way of thinking of it is that Ud chooses at random a function h from a family of “hash
functions” H and applies it on X (i.e. Ext(X,h) = h(x)). We know that every function has a
distribution X for which it fails, but for a specific distribution most of the functions in H are good.

4

