
0368-4283: Space-Bounded Computation 15/5/2018 – Lecture 9

PRGs for space-bounded computation: INW, Nisan

Amnon Ta-Shma and Dean Doron

1 PRGs

Definition 1. Let C be a collection of functions C : Σn → {0, 1}. G : Σ` → Σn is an ε-PRG
against C, if for every C ∈ C,∣∣∣∣ Pr

x∈UΣn
(C(x) = 1)− Pr

y∈U
Σ`

(C(G(y)) = 1)

∣∣∣∣ ≤ ε.

We think of each C ∈ C as a test, and G ε–“fools” all tests in the class.

Fix some function C : Σn → {0, 1}. It defines a set A ⊆ Σn of accepting inputs of some density p.
If we pick L random inputs from Σn, then by Chernoff the probability we fall p± ε times into A is

at most e−2Lε2 . If we pick L ≥ log 1
δ

ε2
this is smaller than δ. If We want to be good against a class

C of |C| tests, all we need is too take L ≥ log
|C|
δ

ε2
. Thus:

Lemma 2. Let C be a family of functions C : Σn → {0, 1}. Let ` = log log |C|+ 2 log(1
ε) + log log 1

δ .
Then all functions G : Σ` → Σn, except perhaps a δ function, are ε–PRG against C. In particular
such an ε–PRG exists. The required seed length is O(log(nS)).

Example 3. Say we want to fool all circuits over n binary inputs and size at most S (S counts
the number of vertices plus the number of edges). The log of the number of such circuits is at most
O(S logS).

Example 4. Now we want to fool all branching programs of length T , width W and alphabet Σ. The
log of the number of such branching programs is at most O(TW |Σ| log(W)). If T,W, |Σ| = poly(n)
the required seed length is ` = O(log n).

In the following we will fool bounded-width branching programs, and consequently prove:

Theorem 5 ([2, 1]). Let C be the class of length n, width W = 2s branching programs, and let ε > 0.
Then, there exists a PRG G : {0, 1}` → {0, 1}T against C with seed-length ` = O(log T · log(TWε))
and error ε. G is computable in O(`) space.

As a consequence, we get:

Corollary 6. There exists a PRG G : {0, 1}` → {0, 1}n against BPL with seed-length ` = O(log2 n)
and error ε = 1

poly(n) . G is computable in O(`) space.

We will start with an INW (Impagliazzo, Nisan and Wigderson) type PRGs and then do Nisan’s.
Historically, [1] is a modification of the breakthrough result of Nisan [2].

As USTCON ∈ BPL we reproved Savitch for undirected graphs. We will show that in fact we get
more: BPL ⊆ DTISP(poly(n), log2 n) [3]. We remark that very little is known in that direction
for the connectivity problem over directed graphs (does it have a substantially sub-linear space
algorithm running in polynomial time?).

1

2 The INW generator

2.1 The length-2 case

We start with the length-2 case and Σ = {0, 1}m1 . We choose x ∈ Σ at random and feed it to our
branching program M . From M ’s intial state, x brings us to some σ(x) ∈ [W]. How many bits of
information (out of m1) did the transition reveal to M? At most w bits.

More formally, H∞(X) = m1, whereas if we denote S to be the random variable, taking values in
[W], that represents the state we have reached after reading a uniform random string of length T ,
then typically expect H∞(X | S = σ) ≥ m1 − w. That is, although when reaching the next layer
X is no longer uniform, it still has enough min-entropy so we can extract more randomness from
it using a seeded extractor.

Let Ext : {0, 1}m1×{0, 1}d → {0, 1}m2 be a strong (k, ε) seeded extractor for k = m1−w− log(1/ε).
We define G1 : {0, 1}m1+d → {0, 1}m1+m2 by

G1(x; y) = x ◦ Ext(x, y).

Definition 7. We say that σ ∈ [W] is bad if H∞(X|S = σ) < k.

Claim 8. Pr[S is bad] ≤ ε.

Proof. Fix a bad σ ∈ [W]. Then, there exists x0 ∈ {0, 1}m1 such that Pr[X = x0 | S = σ] > 2−k.
On the one hand, Pr[X = x0] = 2−m1 . On the other hand,

Pr[X = x0] ≥ Pr[X = x0 | S = σ] Pr[S = σ] > 2−k Pr[S = σ],

so Pr[S = σ] < 2−m1+k = 2−w−log(1/ε). Overall, by the union-bound, the probability that S is bad
is at most |W |2−w−log(1/ε) = ε.

We now have:

Claim 9. Let M be a binary branching program of length m1 +m2 and width W . Then, G1 2ε-fools
M .

Proof. With probability at least 1 − ε over σ ∈ S, H∞(X | S = σ) ≥ k. Fix such a σ, and let
X2 = Ext(X,Y) where Y is uniform over {0, 1}d and independent of X. By the properties of the
extractor,

|(Y,X2 | S = σ)− (Y,Um2)| ≤ ε,

so the overall error is at most 2ε.

We can also view that scenario as a two-player game. Player A holds x ∈ {0, 1}m1 , walks according
to x over M and sends the state σ ∈ [W] she ended up in to Player B. Player B holds x2 ∈ {0, 1}m2

and a public y ∈ {0, 1}d. From σ, Player B can continue walking over M either with x2 or with
Ext(x1, y). Up to an error of ε, the players cannot distinguish between the case where x1, x2 and
y are all uniform and independent and the case where x1 and y are uniform and independent, but
x2 is a deterministic function of x1 and y, namely x2 = Ext(x, y1).

2

2.2 The length-n case

The general PRG is constructed as follows.

G0(x) = x

For the induction rule we have two variants:

1. Carve the seed from the input itself.

Gt(x ◦ x′t) = Gt−1(x) ◦Gt−1(Ext(x, x′t)).

2. Use one public (random) seed per level, using the same seed in all applications at the same
level.

Gt(x; y1, . . . , yt) = Gt−1(x; y2, . . . , yt) ◦Gt−1(Ext(x, y1); y2, . . . , yt).

In either variant:

Lemma 10. Gt(U) (2t − 1)ε fools binary branching programs of width w.

The proof is by a hybrid argument. Think of a tree of level t, with 2t leaves, where at each non-leaf
we double the block.

Example 11. For the second variant, and 4 output blocks, we have the 4 distributions:

• D0 is the distribution (X1, X2, X3, X4) = Um1 × Um2 × Um2 × Um3.

• D1 is the distribution (X1, X2, X3,Ext1(X3, Y2)).

• D2 is the distribution (X1,Ext1(X1, Y1), X3,Ext1(X3, Y2)).

• D3 is the distribution G(Um1 ;Ud1+d2) = (X1,Ext1(X1, Y1),Ext1(X1, Y2),Ext2(Ext1(X1, Y1), Y2)).

In the first variant we just need extractors, in the second variant we need strong extractors

2.3 Setting parameters

For the first variant: The error accumulates. We apply the extractor with seed length O(log(s+ T
ε)).

Assuming T > s, this is O(log T
ε). The entropy loss at each level come because of two reasons:

1. The s = log(|W |) bits that the machine knows,

2. The extractor’s entropy loss, which is at least O(log T
ε).

We have log(T) levels. Altogether, we need initial seed length O(log T (s+ log(Tε)).

Notice that while the loss at (1) is indeed s, we treat the losses as if they accumulate whereas truly
the machine has only s memory, so if we lose s new bits at some time, we must have forgotten
information we have learnt before.

The analysis of the second variant is the same, except that the loss at each stage is the seed yi itself
and the blocks keep the same length.

3

2.4 A comparison of Rozenman-Vadhan and INW

Let’s consider the action of the first variant on two levels. We need some notaion. If x is a string,
and we partition it to two, then x′ is the prefix and x′′ the suffix, for the appropriate lengths (we
omit the lengths to reduce the clatter). Let’s also denote x[y] = E(x, y) for the extractor with
appropriate lengths. In this notation:

G1(x) = x′ ◦ x′[x′′]
Gk+1(x) = Gk(x

′) ◦Gk(x′[x′′]).

Let’s think of Rozenman Vadahan for locally invertible graphs. In this case we generate a sequence
(independent of the vertex of the graph in which we start). We used the sequence to generate UTSs
for locally invertible graphs and UESs for geberal graphs. Now let us assume the local inversion is
the identity function (as we did for the unitary operator for directed, consistently labeled graphs).
What is this sequence?

If x ∈ [D] and the yis are from [d2], then it was:

RV1(x, y1) = x ◦ x[y1]

RVk+1(x, y1, . . . , yk+1) = RVk(x, y1, . . . , yk) ◦RVk((x, y1, . . . , yk)[yk+1]).

We conclude that the two constructions are the same. Yet, the analysis is very different. This is
because:

• The INW analysis uses full fledged extractors with sufficiently low error ε
T , so that even when

the errors accumulate they are less than ε. This gives a PRG. The cost is the long seed length
(basically, for polynomial width, length and error O(log2 n).

• In RV the seed length is constant. The number of applications is super-constant. Thus, we
cannot accumulate errors, and we need to argue differently. The alternative argument is that
the gap slowly improves. This only solves connectivity for undirected graphs. We also got a
UTS for locally invertible graphs, but even at best a UTS is not a PRG. Yet, the construction
is much cheaper and takes O(log n) space.

2.5 Explicitness

Ahmmm... It can be easily done in space which is order the seed length and simultaneously
polynomial time.

Can we hope to anything better given that the seed length is O(log2 n)?

4

3 Nisan’s generator

3.1 The length-2 case

The generator: We take a family of hash functions H = {h : Σ→ Σ} such that for every A,B ⊆ Σ,

Pr
h∈H

[∣∣∣∣ Pr
x∈Σ

[x ∈ A ∧ h(x) ∈ B]− ρ(A)ρ(B)

∣∣∣∣ ≥ α] ≤ 1

α2|Σ|
= δ (1)

for α =
√

1
δ|Σ| , and H is explicit, it has, say, cardinality |Σ|2, and an efficient indexing from

h ∈ [|Σ|2] to the function h : x→ h(x).

We again use

G(x;h) = (x, h(x)).

Remark 12. We have several options for this H: An extractor (the family is indexed by the
seed) with output length equals input length, an expander (which is just such an extractor), or a
2-universal family of hash functions (as we saw in the HW), which, we note, is again an extractor
of the same kind.

We want to fool a branching program M of width W , length 2 and alphabet Σ. We can view the
action of M as matrix multiplication: Denote

Ai,k = {σ ∈ Σ | M moves from i to k with σ}

as the set of all a ∈ Σ and similarly Bk,j for moving from k to j in the second level. Then the
probability M mover from i to j is ∑

k

ρ(Ai,k)ρ(Bk,j),

where ρ is the density function. If the two layers are the same, A = B and the two steps compute
matrix squaring. We want to show the PRG approximates the product (or squaring). Define
a matrix Mh where Mh[i, j] is the probability M goes from i to j when we walk according to
x ◦ h(x) ∈ Σ2.

With these notations, we can write

M [i, j] =
W∑
k=1

Pr
x1,x2

[x1 ∈ Ai,k ∧ x2 ∈ Bk,j]

Mh[i, j] =

W∑
k=1

Pr
x

[x ∈ Ai,k ∧ h(x) ∈ Bk,j].

Definition 13. We say that h is α-good for M if for every i, j, k ∈ [W] it holds that∣∣∣∣ Pr
x∈Σ

[x ∈ Ai,k ∧ h(x) ∈ Bk,j]− ρ(Ai,k)ρ(Bk,h)

∣∣∣∣ < α.

The next claim simply follows from the union-bound:

5

Claim 14. For every A ⊆ Σ, Prh∈H[h is not α-good for A] ≤ δW 3.

Next, we wish to claim that we indeed approximate the transition probabilities. Throughout, we
use the induced infinity norm, ‖A‖ = maxi

∑
j |A[i, j]|. This norm is sub-additive (as is every

norm) and sub-multiplicative. Also, if A and B are both stochastic matrices and p is some integer,
then ‖Ap −Bp‖ ≤ p ‖A−B‖ (prove it).

Claim 15. Let h be α-good for A. Then, ‖M −Mh‖ ≤W 2α.

Proof. Fix some i, j ∈ [W]. Then,

|M [i, j]−Mh[i, j]| =

∣∣∣∣∣
W∑
k=1

Pr
x1,x2

[x1 ∈ Ai,k ∧ x2 ∈ Bk,j]−
W∑
k=1

Pr
x

[x ∈ Ai,k ∧ h(x) ∈ Bk,j]

∣∣∣∣∣
=

∣∣∣∣∣
W∑
k=1

ρ(Ai,k)ρ(Bk,j)−
W∑
k=1

Pr
x

[x ∈ Ai,k ∧ h(x) ∈ Bk,j]

∣∣∣∣∣
≤

W∑
k=1

∣∣∣ρ(Ai,k)ρ(Bk,j)− Pr
x

[x ∈ Ai,k ∧ h(x) ∈ Bk,j]
∣∣∣ ≤Wα.

To conclude the length-2 case: We saw that h is α-good for A with probability at least 1−W 2α,
and if indeed so, then ‖M −Mh‖ ≤W 2α.

3.2 The length-n case

The natural idea is to apply the above technique recursively. We will not get greedy, and we will
choose a “fresh” hash function for every level of the recursion. Formally, we construct Gt : Σ×Ht →
Σ(2t) as follows:

G0(x) = x

Gt(x;h1, . . . , ht) = Gt−1(x;h2, . . . , ht) ◦Gt−1(h1(x);h2, . . . , ht).

Remark 16. This looks similar to the second variant we presented for INW as the hash functions
hi are public, random strings. There is a difference, though. In the second variant before we used:

1. strong extrators

2. with shrinking block length.

The extractor we use here cannot be strong because there is an unavoidable entropy loss. Instead,
the hash functions can be fixed such that property in Definition 13 holds. The test in Definition 13
is weaker (it’s a small subset of the tests of statistical closeness) and, in a sense, we get strongness
(we can almost always fix the seed and make it public, and the output is good for it) without the
unavoidable entropy loss extractors have. Therefore, in particular, we retain the block length, and
this allows x to be O(s) long rather than O(s log T

ε) in INW.

6

For simplicity let us assume (w.l.o.g.) that the transition matrix of every layer is the same, let us
call it A. We therefore try to approximate AT . For h1, . . . , ht ∈ H define Ah1,...,ht [i, k] to be the
probability over a random x ∈ Σ that i is moved to k via Gt(x, h1, . . . , ht). A∅ = A.

Claim 17. Let {h1, . . . , ht} ⊆ H such that for every i ≤ t, hi is α-good for Ahi+1,...,ht. Then,∥∥∥A(2t) −Ah1,...,ht

∥∥∥ ≤ (2t − 1)W 2α.

Proof. By induction on t. For t = 1 we already proved it. Next, write∥∥∥A(2t) −Ah1,...,ht

∥∥∥ ≤ ∥∥∥A(2t) −A2
h2,...,ht

∥∥∥+
∥∥A2

h2,...,ht −Ah1,...,ht

∥∥ .
The first term is at most

2
∥∥∥A(2t−1) −Ah2,...,ht

∥∥∥ ≤ 2(2t−1 − 1)W 2α = (2t − 2)W 2α

by the induction’s hypothesis. The second term is at most W 2α due to the t = 1 case. Overall,∥∥∥A(2t) −Ah1,...,ht

∥∥∥ ≤ (2t − 2)W 2α+W 2α = (2t − 1)W 2α,

as desired.

3.3 Setting parameters

GivenA, We want to ε-foolAT for T = 2t. First, for good h1, . . . , ht we want that
∥∥∥A(2t) −Ah1,...,ht

∥∥∥ ≤
ε
2 , so we need T ·W 2α ≤ ε, which implies that we can take α = ε

T ·W 2 .

The probability over the choices of {h1, . . . , ht} that ht is α-good for A and every hi for i < t is
α-good for Ahi+1,...,ht is at least 1− tδW 3. To get tδW 3 ≤ ε

2 , we need δ ≤ 1
α2|Σ| = ε

2tW 3 so we can
set

|Σ| = 2tW 3

α2ε
=

2tT 2W 7

ε3
.

The seed length of Gt is log |Σ| + t · 2 log |Σ|. As log |Σ| = O(log(TWε)), we get a seed length of
` = O(log T · log(TWε)), as required by Theorem 5, precisely as in INW.

What is left is the issue of explicitness.

Claim 18. Every bit of Gt is computable in space O(`).

Proof. For every j ∈ {0, 1}t, the j-th element of Gt(x;h1, . . . , ht) is given by

hjtt (h
jt−1

t−1 (· · ·hj11 (x)))

where h1
i means applying hi and h0

i means taking the identity. As x and h1, . . . , ht are written on
the input-tape, the explicitness follows from the fact that we can evaluate every h using O(log |Σ|)
space. This is similar to the second variant of INW we have seen.

We have precisely the same seed length (x, j1, . . . , ht) as in INW second variant (up to constant
factors) and precisely the same nice feature that any leaf in the tree can be very efficiently calculated
once we have the hi’s. So what have we gained?

7

1. We can fix hi and check they are good.

2. Since x retains its length it can be O(log n) long rather than O(log2 n).

We will use these advantages in the next section (and lectures).

4 BPL ⊆ SC

A deterministic algorithm that runs in space O(log2 n) may potentially run for 2O(log2 n), which is
indeed the case if we want to simulate a probabilistic space-bounded algorithm over all the seed’s
of, say, Nisan’s generator. However, we can do much better.

The key observation is that instead of choosing h1, . . . , ht completely at random, and arguing that
with high probability they are all good, we will deterministically search for good hash functions.
Indeed:

Lemma 19. Given a matrix A and h2, . . . , hi ∈ H for i ≤ t = log T , there exists an algorithm that
finds h1 ∈ H which is α-good for Ah2,...,hi. The algorithm uses O(log(TWε)) space and poly(T ·Wε)
time.

Proof. The algorithm goes as follows. For every h ∈ H:

• For every s, t ∈ [W]:

– Compute p1 = Ah1,...,hi [s, t].

– Compute p2 =
∑

`∈[W]Ah2,...,hi [s, `]Ah2,...,hi [`, t].

– If |p1 − p2| > α, proceed to the next h.

• Return h1 = h.

For each h, s and t, The 2W + 1 computations of A are performed by computing the average over
x ∈ Σ of the corresponding Gi with the fixed hash functions. This takes poly(|Σ|, T) time, as each
computation of Gi takes time poly(log |Σ|, 2i). Overall, the procedure runs in time poly(T,W, |Σ|) =
poly(T,W, 1/ε). We already proved there exists such h1 (also with high probability), and the h

that is returned satisfies
∥∥∥Ah1,...,hi −A2

h2,...,hi

∥∥∥ ≤W 2α. Thus, going over all hash functions, we will

eventually succeed.

Notice that we crucially used the fact that given a fixed sequence h1, . . . , ht:

1. Any output block of the generator can be computed in logarithmic space, and,

2. We can check if the next hash function is good (for the prefix) in logarithmic space, because
the number of tests is small.

Notice that we can do neither in the two variants of INW we considered.

8

Thus, given A, we can find a good sequence h1, . . . , ht in space O(t log |Σ|) = O(log T ·log(TWε)) and
polynomial time (the space is mainly needed for storing the sequence). Given h1, . . . , ht so that ht is

α = ε
nW 2 -good for A and every hi for i < t is α-good for Ahi+1,...,ht , we saw that

∥∥∥A(2t) −Ah1,...,ht

∥∥∥ ≤
ε. Computing Ah1,...,ht [s, t] for every s, t ∈ [W] amounts to averagingGt(x, h1, . . . , ht) over all x ∈ Σ,
which we already saw that it takes poly(TWε) time.

Plugging-in T = n, W = 2O(logn) and a constant ε, we get:

Theorem 20. BPL ⊆ DTISP(poly(n), O(log2 n)) ⊆ SC.

References

[1] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network algo-
rithms. In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing,
pages 356–364. ACM, 1994.

[2] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[3] Noam Nisan. RL⊆SC. Computational Complexity, 4(1):1–11, 1994.

9

