0368-4283: Space-Bounded Computation

Solving Laplacian systems space-efficiently Amnon Ta-Shma and Dean Doron

1 The Moore-Penrose pseudo-inverse

Definition 1. Let L be any matrix. The Moore-Penrose pseudo-inverse of L, L^* , is the unique matrix satisfying all of the following:

- 1. $LL^{\star}L = L$.
- 2. $L^{\star}LL^{\star} = L^{\star}.$
- 3. LL^{\star} is Hermitian.
- 4. $L^{\star}L$ is Hermitian.

The SVD gives us a way to compute the pseudo-inverse.

Lemma 2. Let $L = U\Sigma V^{\dagger}$ be the SVD of L. Then, $L^{\star} = V\Sigma^{\star}U^{\dagger}$, where Σ^{\star} is obtained by taking the reciprocal of each non-zero element on the diagonal, leaving the zeros in place.

When L is normal and has non-negative eigenvalues (e.g., when G is regular), the SVD coincides with the spectral decomposition. Thus:

Lemma 3. Assume that L is Hermitian with eigenvalues $0 = \lambda_n \leq \ldots \leq \lambda_1$. Then, L^* has the same eigenvectors as L and eigenvalues $\lambda_n^* \leq \ldots \leq \lambda_1^*$, where $\lambda_i^* = \lambda_i^{-1}$ if $\lambda_i \neq 0$ and 0 otherwise.

2 The Laplacian

Let M be a transition matrix of an undirected graph G over n vertices (that is, $M = AD^{-1}$ where A is the adjacency matrix of G and D is its degree diagonal matrix). The normalized Laplacian of G is

$$L = I - M,$$

and is an important operator in many areas of science. We make a few simple observations:

- 1. *M* is similar to the Hermitian matrix $D^{-/12}MD^{1/2} = D^{-1/2}AD^{-/2}$, and so *L* has real eigenvalues satisfying $0 = \lambda_n \leq \ldots \leq \lambda_1 \leq 2$, i.e., *L* is PSD.
- 2. G is connected if $\lambda_{n-1} = \gamma(G) > 0$, where $\gamma(G)$ is the spectral gap of G.

We would like to solve the linear system Lx = b space-efficiently, and present a solution due to Murtagh, Reingold, Sidford and Vadhan [2]. As L is not invertible (0 is an eigenvalue), we need to work with a generalized inverse. For undirected graphs, the Moore-Penrose pseudo-inverse is a natural choice.

In fact, we can (and will) assume w.l.o.g. that G is regular. Indeed,

Lemma 4. Suppose G is an undirected graph with adjacency matrix A, degree matrix D, and transition matrix $M = AD^{-1}$. Let E a diagonal matrix of self-loops to make the graph d-regular. Then, Let L = I - M be the original Laplacian and $L' = I - \frac{1}{d}(A + E)$ the new Laplacian. Then

$$L^{\star} = \frac{1}{d}D(L')^{\star}$$

Proof. First, $LD = (I - M)D = D - A = D + E - (A + E) = dI - (A + E) = d(I - \frac{1}{d}(A + E)) = dL'$. Now we check that $\frac{1}{d}D(L')^*$ satisfies the four conditions above (and notice that L' and its pseudo inverse are normal).

This way, we can also make sure that G is aperiodic.

We now need to justify that the pseudo-inverse indeed helps us solving linear equations.

Claim 5. If the linear system Lx = b has a solution then a solution is given by $x = L^*b$.

Proof. Let x_0 be a solution, so $Lx_0 = b$. Then $LL^*b = LL^*Lx_0 = Lx_0 = b$. Hence, L^*b is a solution to the system.

In fact, a full characterization of the solutions of Lx = b is known, but we will not get into the details.

3 A PSD partial order

Definition 6. Let A be a symmetric real matrix. The following is equivalent:

- For every $v \in \mathbb{R}^n$ it holds that $v^{\dagger} A v \ge 0$,
- All the eigenvalues of A are non-negative.

If any condition happens we say A is positive semi-definite, and denote $A \ge 0$. We write $A \le B$ if $B - A \ge 0$.

Given a *d*-regular graph G (we assume w.l.o.g. that d is a power of two), we want to approximate the entries of L^* . We use the spectral approximation of matrices.

Definition 7. Let X, Y be real, symmetric matrices. We say that $X \approx_{\varepsilon} Y$ if $e^{-\varepsilon} \cdot X \leq Y \leq e^{\varepsilon} \cdot X$.

The above notion of approximation is seemingly weaker than approximation in the ℓ_{∞} -norm. However, for the purpose of approximating a solution to a Laplacian system, it suffices:

Claim 8. Assume $\widetilde{L^{\star}} \approx_{\varepsilon} L^{\star}$ and $b \in \text{Image}(L)$. Then, $\left\| L^{\star}b - \widetilde{L^{\star}}b \right\| \leq \varepsilon \left\| L^{\star}b \right\|$.

Proof. See Appendix D (or Lemma 8.3) of the MRSV paper.

We record some useful facts about the spectral approximation. We start with expected facts:

Claim 9. Let X, Y, W, Z be real, symmetric, positive semi-definite matrices. Then:

- 1. If $X \approx_{\varepsilon} Y$ then $Y \approx_{\varepsilon} X$.
- 2. If $X \approx_{\varepsilon} Y$ and c is a non-negative real number then $cX \approx_{\varepsilon} cY$.
- 3. If $X \approx_{\varepsilon} Y$ and $W \approx_{\varepsilon} Z$ then $X + W \approx_{\varepsilon} Y + Z$.
- 4. If $X \approx_{\varepsilon_1} Y$ and $Y \approx_{\varepsilon_2} Z$ then $X \approx_{\varepsilon_1 + \varepsilon_2} Z$.
- 5. If $X \approx_{\varepsilon} Y$ then $I \otimes X \approx_{\varepsilon} I \otimes Y$.

All the above items are straightforward.

We now record two other facts:

- 1. If $X \approx_{\varepsilon} Y$ and M is any matrix then $M^{\dagger}XM \approx_{\varepsilon} M^{\dagger}YM$.
- 2. If $X \approx_{\varepsilon} Y$ and $\ker(X) = \ker(Y)$ then $X^{\star} \approx_{\varepsilon} Y^{\star}$.

The first inequality is straight forward but quite useful, and does not hold with, e.g., operator norm approximation. Let us prove the second one.

Claim 10. If $X \approx_{\varepsilon} Y$ and $\ker(X) = \ker(Y)$ then $X^* \approx_{\varepsilon} Y^*$.

Proof. Let $v \in \mathbb{R}^n$ and write v = a + b where a belongs to $\ker(X) = \ker(Y)$ and b belongs to the kernel's orthogonal complement. As $\ker(X^*) = \ker(X)$, it holds that $v^{\dagger}X^*v = b^{\dagger}X^*b$ and likewise for Y. Thus, we can restrict ourselves to the invertible subspace, assume w.l.o.g. that X, Y > 0 and prove that $X \approx_{\varepsilon} Y$ implies $X^{-1} \approx_{\varepsilon} Y^{-1}$. In fact, we will show that for general $A, B > 0, A \leq B$ implies $B^{-1} \leq A^{-1}$ and the claim will follow by first taking $B = e^{\varepsilon}X$ and A = Y and then taking B = Y and $A = e^{-\varepsilon}X$.

Let A, B > 0 such that $A \leq B$. As B > 0 it has a unique positive definite square root. Let $M = \sqrt{B}^{-1}A\sqrt{B}^{-1}$, and so $M^{-1} = \sqrt{B}A^{-1}\sqrt{B}$. Note that $M \leq I$ if and only if $M^{-1} \geq I$. Now, $A \leq B$ implies $M \leq I$ by multiplying both sides by \sqrt{B}^{-1} , and thus $M^{-1} \geq I$. Multiplying again both sides by \sqrt{B}^{-1} gives $A^{-1} \geq B^{-1}$, as required.

4 A second look at derandomized squaring

4.1 Expnders

Even if you take a very good expander G it will not be the case that $G \approx J$, because a non-zero number cannot be multiplicatively close to zero. However, with the Laplacian things are different:

Claim 11. Let G be a d regular, undirected graph with transition matrix M. Let L = I - M. Then, $L \approx_{\lambda(G)} I - J$.

Proof. We can express $M = \frac{1}{d} \sum_{i} \lambda_i |v_i\rangle \langle v_i|$ with $\lambda_1 = d$ and $|v_1\rangle \langle v_1| = J$. Hence,

$$L = I - M = I - J - C$$

where $C = \sum_{i \ge 2} \lambda_i |v_i\rangle \langle v_i|$, $||C|| \le \lambda(G)$ and C, I, J commute. For every $i \ge 2$, $e^{-\lambda} \le 1 - \lambda_i \le 1$, because $(1 - \lambda)e^{\lambda} \ge 1$.

Next, we turn to derandomized squaring.

Lemma 12. Let G be a d-regular, undirected, aperiodic graph on n vertices with transition matrix M and H be a regular graph over d vertices. Then,

$$I - M^2 \approx_{\lambda(H)} I - M_{G \otimes H}$$

where $M_{G \otimes H}$ is the transition matrix of $G \otimes H$.

Proof. Using the notations of previous lectures, $M_{G \otimes H} = P \dot{M} \tilde{H} \dot{M} L$. Using Claim 9, we can conclude the following:

$$\begin{split} I - P\dot{M}\tilde{H}\dot{M}L &= P\dot{M}I\dot{M}L - P\dot{M}\tilde{H}\dot{M}L \\ &= P\dot{M}(I\otimes(I-H))\dot{M}L \\ &= d(\dot{M}L)^{\dagger}(I\otimes(I-H))\dot{M}L \\ &\approx_{\lambda(H)} d(\dot{M}L)^{\dagger}(I\otimes(I-J))\dot{M}L \\ &= P\dot{M}(I-\tilde{J})\dot{M}L \\ &= P\dot{M}I\dot{M}L - P\dot{M}\tilde{J}\dot{M}L \\ &= I - M^2. \end{split}$$

-	-	
		н
		н
		н
-	_	-

5 Approximating L^* space-efficiently

We prove:

Theorem 13 ([2]). Given an undirected graph G over n vertices with a Laplacian L and $\varepsilon > 0$, there exists a deterministic algorithm that computes \widetilde{L}^{\star} , where $\widetilde{L}^{\star} \approx_{\varepsilon} L^{\star}$, running in space $O(\log n \log \log(n/\varepsilon))$.

We remark that with a *probabilistic* algorithm, one can do it in space $O(\log(n/\varepsilon))$ [1].

Our main tool, together with a clever identity, will be our well-known *derandomized squaring*. We shall see that the derandomized squaring does not only improves a graph's connectivity but can also replace the original squaring when it comes to approximating a solution to a Laplacian system!

We will prove the theorem for constant error ε .

Lemma 14. Given an undirected graph G over n vertices with a Laplacian L, there exists a deterministic algorithm that computes $\widetilde{L^*}$, where $\widetilde{L^*} \approx_{1/2} L^*$, running in space $O(\log n \log \log n)$.

Proof. Assume w.l.o.g. that G is d-regular, with d/2 self-loops on every vertex. Fix $k = O(\log n)$, $c = \operatorname{poly}(\log n)$. Define the sequence of graphs $G_0 = G, \ldots, G_k$ where

$$G_i = G_{i-1} \circledast H_i$$

and every H_i is a *c*-regular expander over $d \cdot c^{i-1}$ vertices with $k \cdot \lambda(H_i) \leq \frac{1}{4}$. There are easy explicit H_i like that.

Let M_0, \ldots, M_k be the transition matrices of $G_0 = G, \ldots, G_k$. Since we take $k = O(\log n)$ we have $\lambda(M_k) \leq \frac{1}{4}$.

We define

$$W_i = (I + M_0) \cdot \ldots \cdot (I + M_i)(I - J)(I + M_i) \cdot \ldots \cdot (I + M_0).$$

for all $i \in \{0, ..., k-1\}$.

Let

$$\widetilde{L_0}^{\star} = \frac{1}{2}(I-J) + \left(\sum_{i=0}^{k-1} \frac{1}{2^{i+2}}W_i\right) + \frac{1}{2^{k+1}}W_k.$$

The space complexity follows from the following two claims (and composition of space-bounded computations). First, iterated derandomized squaring can be computed in small space:

Claim 15. Every coordinate of every M_i can be computed in space $O(\log n + k \log c) = O(\log n \log \log n)$.

Second, it is not difficult to verify that:

Claim 16. Every coordinate of the multiplication of k matrices of dimension n can be computed in space $O(\log n \cdot \log k)$.

Together, this shows that $\widetilde{L_0}^{\star}$ can be computed in $O(\log n \cdot \log \log n)$ space.

In the next section we turn to the correctness proof.

6 Correctness

6.1 Expressing the Laplacian of M with that of M^2

First, let us see a nice matrix identity, following [3], that expresses the pseudo-inverse of the Laplacian of G via the pseudo-inverse of the Laplacian of G^2 .

Lemma 17. If L = I - M is the normalized Laplacian of an undirected, connected, regular, aperiodic graph on n vertices then

$$(I - M)^* = L^* = \frac{1}{2} \left(I - J + (I + M)(I - M^2)^*(I + M) \right)$$

Proof. The matrices $I, M, J, U - M^2$ are symmetric and commute. Furthermore, we saw that also $(I - M^2)^*$ commute with them. So L^* commutes with L and the share the same orthonormal basis. It is enough to compare eigenvalues.

Let v be an eigenvector of L = I - M with eigenvalue λ . Because of $(I - M^2)^*$ we have a different behaviour with $\lambda = 0$ and $\lambda \neq 0$. For $\lambda = 0$ we get v is all the one vector, Jv = Iv = Mv = v and $(I - M^2)^*v = 0$. So the RHS on v is 0. Clearly $(I - M)^*v$ so an equality holds.

Let v be an eigenvector of L with eigenvalue $\lambda \neq 0$, so $v \perp 1$. Thus, (I-J)v = v, $(I+M)v = (1+\lambda)v$ and $(I - M^2)^*v = \frac{1}{1-\lambda^2}v$. Altogether,

$$\frac{1}{2}\left(I - J + (I + M)(I - M^2)^*(I + M)\right)v = \frac{1}{2}v + \frac{1}{2}\frac{(1 + \lambda)^2}{1 - \lambda^2}v = \frac{1}{1 - \lambda}v = L^*v.$$

Applying the above identity k times:

$$(I - M)^{\star} = L^{\star} = \frac{1}{2}(I - J) + \frac{1}{2}(I + M)(I - M^{2})^{\star}(I + M)$$

$$= \frac{1}{2}(I - J) + \frac{1}{4}(I + M)(I - J)(I + M) + \frac{1}{4}(I + M)(I + M^{2})(I - M^{4})^{\star}(I + M^{2})(I + M)$$

$$= \dots$$

$$= \frac{1}{2}(I - J) + \left(\sum_{i=0}^{k-1} \frac{1}{2^{i+2}}P_{i}\right) + \frac{1}{2^{k+1}}(I + M) \cdot \dots \cdot (I + M^{2^{k}})(I - M^{2^{k+1}})^{\star}(I + M^{2^{k}}) \cdot \dots \cdot (I + M)$$

where for all $i \in \{0, ..., k - 1\},\$

$$P_i = (I+M) \cdot \ldots \cdot (I+M^{2^i})(I-J)(I+M^{2^i}) \cdot \ldots \cdot (I+M).$$

To summarize:

Lemma 18 ([3]). Let M_0, \ldots, M_k be symmetric matrices such that $L_i = I - M_i \ge 0$, $L_i = I - M_{i-1}^2$ $(i.e., M_i = M_{i-1}^2)$. Then,

$$(I - M_0)^* = \frac{1}{2}(I - J) + \left(\sum_{i=0}^{k-1} \frac{1}{2^{i+2}}W_i\right) + \frac{1}{2^{k+1}}R_k.$$

where $W_i = (I + M_0) \dots (I + M_i)(I - J)(I + M_i) \dots (I + M_0)$ and $R_k = (I + M_0)(I + M_1) \dots (I + M_0)(I + M_1) \dots (I + M_0)(I + M_0)(I + M_0)$ $M_k(I - M_{k+1})(I + M_k) \dots (I + M_0).$

6.2 Approximating the Laplacian of M with approximations of the Laplacian of M^2

Let us recap. We have a sequence of graphs $G_0 = G, \ldots, G_k$ where

$$G_i = G_{i-1} \circledast H_i$$

and every H_i is a *c*-regular expander over $d \cdot c^{i-1}$ vertices with $\lambda(H_i) \leq \varepsilon = \frac{1}{4k}$. We let M_i denote the transition matrix of G_i and $L_i = I - M_i$. In Lemma 12 we have seen that

$$L_{i+1} = I - M_{i+1} = I - M_{G_i \otimes H_i} \approx_{\lambda(H_i)} I - M_i^2,$$

i.e., $L_{i+1} \approx_{\varepsilon} I - M_i^2$.

Claim 19. $L_i^{\star} = (I - M_i)^{\star} \approx_{\varepsilon} \frac{1}{2}(I - J + (I + M_i)L_{i+1}^{\star}(I + M_i)), \text{ for every } i \in \{0, \dots, k-1\}.$

Proof. As we noted before $L_i = (I - M_i), I + M_i, (I - M_i)^*, (I - M_i^2)^*, I, J$ commute, and therefore the two matrices on the both sides of the claim share the same orthonormal eigenvector basis. Furthermore, they share the same kernel. By Claim 10, $L_{i+1}^{\star} \approx_{\varepsilon} (I - M_i^2)^{\star}$. By Claim 9, we can multiply both sides by $I + M_i$ and get

$$(I+M_i)L_{i+1}^{\star}(I+M_i) \approx_{\varepsilon} (I+M_i)(I-M_i^2)^{\star}(I+M_i).$$

Again by Claim 9, we can multiply both sides by $\frac{1}{2}$ and add $\frac{1}{2}(I-J) \ge 0$, so

$$\frac{1}{2}(I - J + (I + M_i)L_{i+1}^{\star}(I + M_i)) \approx_{\varepsilon} \frac{1}{2}(I - J + (I + M_i)(I - M_i^2)^{\star}(I + M_i)) = (I - M_i)^{\star} = L_i^{\star},$$

where we have used Lemma 17.

T

Lemma 20 ([3]). Let $\varepsilon, \delta > 0$ and let M_0, \ldots, M_k be symmetric matrices such that $L_i = I - M_i \ge 0$, $L_i \approx_{\varepsilon} I - M_{i-1}^2$ and $L_k \approx_{\delta} I - J$. Then,

$$L_0^{\star} \approx_{k\varepsilon+\delta} \frac{1}{2}(I-J) + \left(\sum_{i=0}^{k-1} \frac{1}{2^{i+2}}W_i\right) + \frac{1}{2^{k+1}}W_k.$$

where $W_i = (I + M_0) \cdot \ldots \cdot (I + M_i)(I - J)(I + M_i) \cdot \ldots \cdot (I + M_0)$.

Proof.

$$\begin{split} L_0^{\star} &= (I - M_0)^{\star} \approx_{\varepsilon} \frac{1}{2} (I - J + (I + M_0) L_1^{\star} (I + M_0)) \\ &\approx_{\varepsilon} \quad \frac{1}{2} (I - J) + \frac{1}{4} (I + M_0) (I - J) (I + M_0) + \frac{1}{4} (I + M_0) (I + M_1) L_2^{\star} (I + M_1) (I + M_0) \\ &\approx_{\varepsilon} \quad \dots \\ &\approx_{\varepsilon} \quad \frac{1}{2} (I - J) + \left(\sum_{i=0}^{k-1} \frac{1}{2^{i+2}} W_i \right) + \frac{1}{2^{k+1}} R_k \end{split}$$

where $R_k = (I + M_0) \cdot \ldots \cdot (I + M_{k-1})(I - M_k)^*(I + M_{k-1}) \cdot \ldots \cdot (I + M_0)$. Finally, $L_k \approx_{\delta} I - J$ and this implies $R_k \approx_{\delta} W_k$.

6.3 Obtaining a constant error approximation

Note that if we want a constant error approximation, in order to use Lemma 20 we need each $\varepsilon = \frac{1}{O(\log n)}$ so that $k\varepsilon$ is constant for $k = O(\log n)$ (and we need $k = O(\log n)$ to reach a good enough approximation of I - J). This, in turn, implies that we need to take c, the degree of the expanders, to be poly-logarithmic in n.

7 Construction for low ε

It is left to show that by investing extra $O(\log n \log \log(n/\varepsilon))$, we can boost our $\frac{1}{2}$ -approximation to an ε -approximation. This follows from the following nice lemma:

Lemma 21. Let A, P be real symmetric and invertible matrices of dimension n so that there exists ε for which $(1 - \varepsilon)P^{-1} \le A \le P^{-1}$. Then, $P_k = \sum_{i=0}^k P(I - AP)^i$ satisfies

$$\left(1 - \frac{\varepsilon^{k+1}}{1 - \varepsilon}\right) A^{-1} \le P_k \le A^{-1}$$

For the proof of the above lemma, and how to use it in order to get Theorem 13, see [2].

References

 Dean Doron, François Le Gall, and Amnon Ta-Shma. Probabilistic logarithmic-space algorithms for laplacian solvers. In *LIPIcs-Leibniz International Proceedings in Informatics*, volume 81. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

- [2] Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. Derandomization beyond connectivity: Undirected laplacian systems in nearly logarithmic space. arXiv preprint arXiv:1708.04634, 2017.
- [3] Richard Peng and Daniel A Spielman. An efficient parallel solver for sdd linear systems. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 333–342. ACM, 2014.