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Solving Laplacian systems space-efficiently

Amnon Ta-Shma and Dean Doron

1 The Moore-Penrose pseudo-inverse

Definition 1. Let L be any matrix. The Moore-Penrose pseudo-inverse of L, L?, is the unique
matrix satisfying all of the following:

1. LL?L = L.

2. L?LL? = L?.

3. LL? is Hermitian.

4. L?L is Hermitian.

The SVD gives us a way to compute the pseudo-inverse.

Lemma 2. Let L = UΣV † be the SVD of L. Then, L? = V Σ?U †, where Σ? is obtained by taking
the reciprocal of each non-zero element on the diagonal, leaving the zeros in place.

When L is normal and has non-negative eigenvalues (e.g., when G is regular), the SVD coincides
with the spectral decomposition. Thus:

Lemma 3. Assume that L is Hermitian with eigenvalues 0 = λn ≤ . . . ≤ λ1. Then, L? has the
same eigenvectors as L and eigenvalues λ?n ≤ . . . ≤ λ?1, where λ?i = λ−1i if λi 6= 0 and 0 otherwise.

2 The Laplacian

Let M be a transition matrix of an undirected graph G over n vertices (that is, M = AD−1 where
A is the adjacency matrix of G and D is its degree diagonal matrix). The normalized Laplacian of
G is

L = I −M,

and is an important operator in many areas of science. We make a few simple observations:

1. M is similar to the Hermitian matrix D−/12MD1/2 = D−1/2AD−/2, and so L has real eigen-
values satisfying 0 = λn ≤ . . . ≤ λ1 ≤ 2, i.e., L is PSD.

2. G is connected if λn−1 = γ(G) > 0, where γ(G) is the spectral gap of G.

We would like to solve the linear system Lx = b space-efficiently, and present a solution due to
Murtagh, Reingold, Sidford and Vadhan [2]. As L is not invertible (0 is an eigenvalue), we need
to work with a generalized inverse. For undirected graphs, the Moore-Penrose pseudo-inverse is a
natural choice.

In fact, we can (and will) assume w.l.o.g. that G is regular. Indeed,
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Lemma 4. Suppose G is an undirected graph with adjacency matrix A, degree matrix D, and
transition matrix M = AD−1. Let E a diagonal matrix of self-loops to make the graph d-regular.
Then, Let L = I −M be the original Laplacian and L′ = I − 1

d(A+ E) the new Laplacian. Then

L? =
1

d
D(L′)?

Proof. First, LD = (I−M)D = D−A = D+E−(A+E) = dI−(A+E) = d(I− 1
d(A+E)) = dL′.

Now we check that 1
dD(L′)∗ satisfies the four conditions above (and notice that L′ and its pseudo

inverse are normal).

This way, we can also make sure that G is aperiodic.

We now need to justify that the pseudo-inverse indeed helps us solving linear equations.

Claim 5. If the linear system Lx = b has a solution then a solution is given by x = L?b.

Proof. Let x0 be a solution, so Lx0 = b. Then LL∗b = LL∗Lx0 = Lx0 = b. Hence, L?b is a solution
to the system.

In fact, a full characterization of the solutions of Lx = b is known, but we will not get into the
details.

3 A PSD partial order

Definition 6. Let A be a symmetric real matrix. The following is equivalent:

• For every v ∈ Rn it holds that v†Av ≥ 0,

• All the eigenvalues of A are non-negative.

If any condition happens we say A is positive semi-definite, and denote A ≥ 0. We write A ≤ B if
B −A ≥ 0.

Given a d-regular graph G (we assume w.l.o.g. that d is a power of two), we want to approximate
the entries of L?. We use the spectral approximation of matrices.

Definition 7. Let X,Y be real, symmetric matrices. We say that X ≈ε Y if e−ε ·X ≤ Y ≤ eε ·X.

The above notion of approximation is seemingly weaker than approximation in the `∞-norm. How-
ever, for the purpose of approximating a solution to a Laplacian system, it suffices:

Claim 8. Assume L̃? ≈ε L? and b ∈ Image(L). Then,
∥∥∥L?b− L̃?b∥∥∥ ≤ ε ‖L?b‖.

Proof. See Appendix D (or Lemma 8.3) of the MRSV paper.

We record some useful facts about the spectral approximation. We start with expected facts:

Claim 9. Let X,Y,W,Z be real, symmetric, positive semi-definite matrices. Then:
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1. If X ≈ε Y then Y ≈ε X.

2. If X ≈ε Y and c is a non-negative real number then cX ≈ε cY .

3. If X ≈ε Y and W ≈ε Z then X +W ≈ε Y + Z.

4. If X ≈ε1 Y and Y ≈ε2 Z then X ≈ε1+ε2 Z.

5. If X ≈ε Y then I ⊗X ≈ε I ⊗ Y .

All the above items are straightforward.

We now record two other facts:

1. If X ≈ε Y and M is any matrix then M †XM ≈ε M †YM .

2. If X ≈ε Y and ker(X) = ker(Y ) then X? ≈ε Y ?.

The first inequality is straight forward but quite useful, and does not hold with, e.g., operator norm
approximation. Let us prove the second one.

Claim 10. If X ≈ε Y and ker(X) = ker(Y ) then X? ≈ε Y ?.

Proof. Let v ∈ Rn and write v = a + b where a belongs to ker(X) = ker(Y ) and b belongs to the
kernel’s orthogonal complement. As ker(X?) = ker(X), it holds that v†X?v = b†X?b and likewise
for Y . Thus, we can restrict ourselves to the invertible subspace, assume w.l.o.g. that X,Y > 0 and
prove that X ≈ε Y implies X−1 ≈ε Y −1. In fact, we will show that for general A,B > 0, A ≤ B
implies B−1 ≤ A−1 and the claim will follow by first taking B = eεX and A = Y and then taking
B = Y and A = e−εX.

Let A,B > 0 such that A ≤ B. As B > 0 it has a unique positive definite square root. Let

M =
√
B
−1
A
√
B
−1

, and so M−1 =
√
BA−1

√
B. Note that M ≤ I if and only if M−1 ≥ I. Now,

A ≤ B implies M ≤ I by multiplying both sides by
√
B
−1

, and thus M−1 ≥ I. Multiplying again

both sides by
√
B
−1

gives A−1 ≥ B−1, as required.

4 A second look at derandomized squaring

4.1 Expnders

Even if you take a very good expander G it will not be the case that G ≈ J , because a non-zero
number cannot be multiplicatively close to zero. However, with the Laplacian things are different:

Claim 11. Let G be a d regular, undirected graph with transition matrix M . Let L = I−M . Then,
L ≈λ(G) I − J .

Proof. We can express M = 1
d

∑
i λi |vi〉〈vi| with λ1 = d and |v1〉〈v1| = J . Hence,

L = I −M = I − J − C

where C =
∑

i≥2 λi |vi〉〈vi|, ‖C‖ ≤ λ(G) and C, I, J commute. For every i ≥ 2, e−λ ≤ 1 − λi ≤ 1,

because (1− λ)eλ ≥ 1.
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Next, we turn to derandomized squaring.

Lemma 12. Let G be a d-regular, undirected, aperiodic graph on n vertices with transition matrix
M and H be a regular graph over d vertices. Then,

I −M2 ≈λ(H) I −MGsH ,

where MGsH is the transition matrix of GsH.

Proof. Using the notations of previous lectures, MGsH = PṀH̃ṀL. Using Claim 9, we can
conclude the following:

I − PṀH̃ṀL = PṀIṀL− PṀH̃ṀL

= PṀ(I ⊗ (I −H))ṀL

= d(ṀL)†(I ⊗ (I −H))ṀL

≈λ(H) d(ṀL)†(I ⊗ (I − J))ṀL

= PṀ(I − J̃)ṀL

= PṀIṀL− PṀJ̃ṀL

= I −M2.

5 Approximating L? space-efficiently

We prove:

Theorem 13 ([2]). Given an undirected graph G over n vertices with a Laplacian L and ε >

0, there exists a deterministic algorithm that computes L̃?, where L̃? ≈ε L?, running in space
O(log n log log(n/ε)).

We remark that with a probabilistic algorithm, one can do it in space O(log(n/ε)) [1].

Our main tool, together with a clever identity, will be our well-known derandomized squaring. We
shall see that the derandomized squaring does not only improves a graph’s connectivity but can
also replace the original squaring when it comes to approximating a solution to a Laplacian system!

We will prove the theorem for constant error ε.

Lemma 14. Given an undirected graph G over n vertices with a Laplacian L, there exists a
deterministic algorithm that computes L̃?, where L̃? ≈1/2 L

?, running in space O(log n log logn).

Proof. Assume w.l.o.g. that G is d-regular, with d/2 self-loops on every vertex. Fix k = O(log n),
c = poly(log n). Define the sequence of graphs G0 = G, . . . , Gk where

Gi = Gi−1sHi

and every Hi is a c-regular expander over d ·ci−1 vertices with k ·λ(Hi) ≤ 1
4 . There are easy explicit

Hi like that.
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Let M0, . . . ,Mk be the transition matrices of G0 = G, . . . , Gk. Since we take k = O(log n) we have
λ(Mk) ≤ 1

4 .

We define
Wi = (I +M0) · . . . · (I +Mi)(I − J)(I +Mi) · . . . · (I +M0).

for all i ∈ {0, . . . , k − 1}.
Let

L̃0
?

=
1

2
(I − J) +

(
k−1∑
i=0

1

2i+2
Wi

)
+

1

2k+1
Wk.

The space complexity follows from the following two claims (and composition of space-bounded
computations). First, iterated derandomized squaring can be computed in small space:

Claim 15. Every coordinate of every Mi can be computed in space O(log n+k log c) = O(log n log log n).

Second, it is not difficult to verify that:

Claim 16. Every coordinate of the multiplication of k matrices of dimension n can be computed
in space O(log n · log k).

Together, this shows that L̃0
?

can be computed in O(log n · log logn) space.

In the next section we turn to the correctness proof.

6 Correctness

6.1 Expressing the Laplacian of M with that of M2

First, let us see a nice matrix identity, following [3], that expresses the pseudo-inverse of the
Laplacian of G via the pseudo-inverse of the Laplacian of G2.

Lemma 17. If L = I − M is the normalized Laplacian of an undirected, connected, regular,
aperiodic graph on n vertices then

(I −M)? = L? =
1

2

(
I − J + (I +M)(I −M2)?(I +M)

)
Proof. The matrices I,M, J, U −M2 are symmetric and commute. Furthermore, we saw that also
(I−M2)∗ commute with them. So L∗ commutes with L and the share the same orthonormal basis.
It is enough to compare eigenvalues.

Let v be an eigenvector of L = I −M with eigenvalue λ. Because of (I −M2)∗ we have a different
behaviour with λ = 0 and λ 6= 0. For λ = 0 we get v is all the one vector, Jv = Iv = Mv = v and
(I −M2)∗v = 0. So the RHS on v is 0. Clearly (I −M)∗v so an equality holds.

Let v be an eigenvector of L with eigenvalue λ 6= 0, so v ⊥ 1. Thus, (I−J)v = v, (I+M)v = (1+λ)v
and (I −M2)?v = 1

1−λ2 v. Altogether,

1

2

(
I − J + (I +M)(I −M2)?(I +M)

)
v =

1

2
v +

1

2

(1 + λ)2

1− λ2
v =

1

1− λ
v = L?v.
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Applying the above identity k times:

(I −M)? = L? =
1

2
(I − J) +

1

2
(I +M)(I −M2)?(I +M)

=
1

2
(I − J) +

1

4
(I +M)(I − J)(I +M) +

1

4
(I +M)(I +M2)(I −M4)?(I +M2)(I +M)

= . . .

=
1

2
(I − J) +

(
k−1∑
i=0

1

2i+2
Pi

)
+

1

2k+1
(I +M) · . . . · (I +M2k)(I −M2k+1

)?(I +M2k) · . . . · (I +M),

where for all i ∈ {0, . . . , k − 1},

Pi = (I +M) · . . . · (I +M2i)(I − J)(I +M2i) · . . . · (I +M).

To summarize:

Lemma 18 ([3]). Let M0, . . . ,Mk be symmetric matrices such that Li = I−Mi ≥ 0, Li = I−M2
i−1

(i.e., Mi = M2
i−1). Then,

(I −M0)
? =

1

2
(I − J) +

(
k−1∑
i=0

1

2i+2
Wi

)
+

1

2k+1
Rk.

where Wi = (I+M0) · . . . · (I+Mi)(I−J)(I+Mi) · . . . · (I+M0) and Rk = (I+M0)(I+M1) . . . (I+
Mk)(I −Mk+1)(I +Mk) . . . (I +M0).

6.2 Approximating the Laplacian of M with approximations of the Laplacian
of M2

Let us recap. We have a sequence of graphs G0 = G, . . . , Gk where

Gi = Gi−1sHi

and every Hi is a c-regular expander over d · ci−1 vertices with λ(Hi) ≤ ε = 1
4k . We let Mi denote

the transition matrix of Gi and Li = I −Mi. In Lemma 12 we have seen that

Li+1 = I −Mi+1 = I −MGisHi ≈λ(Hi) I −M
2
i ,

i.e., Li+1 ≈ε I −M2
i .

Claim 19. L?i = (I −Mi)
? ≈ε 1

2(I − J + (I +Mi)L
?
i+1(I +Mi)), for every i ∈ {0, . . . , k − 1}.

Proof. As we noted before Li = (I−Mi), I+Mi, (I−Mi)
?, (I−M2

i )?, I, J commute, and therefore
the two matrices on the both sides of the claim share the same orthonormal eigenvector basis.
Furthermore, they share the same kernel. By Claim 10, L?i+1 ≈ε (I −M2

i )?. By Claim 9, we can
multiply both sides by I +Mi and get

(I +Mi)L
?
i+1(I +Mi) ≈ε (I +Mi)(I −M2

i )?(I +Mi).

Again by Claim 9, we can multiply both sides by 1
2 and add 1

2(I − J) ≥ 0, so

1

2
(I − J + (I +Mi)L

?
i+1(I +Mi)) ≈ε

1

2
(I − J + (I +Mi)(I −M2

i )?(I +Mi)) = (I −Mi)
? = L?i ,

where we have used Lemma 17.
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Lemma 20 ([3]). Let ε, δ > 0 and let M0, . . . ,Mk be symmetric matrices such that Li = I−Mi ≥ 0,
Li ≈ε I −M2

i−1 and Lk ≈δ I − J . Then,

L?0 ≈kε+δ
1

2
(I − J) +

(
k−1∑
i=0

1

2i+2
Wi

)
+

1

2k+1
Wk.

where Wi = (I +M0) · . . . · (I +Mi)(I − J)(I +Mi) · . . . · (I +M0)..

Proof.

L?0 = (I −M0)
? ≈ε

1

2
(I − J + (I +M0)L

?
1(I +M0))

≈ε
1

2
(I − J) +

1

4
(I +M0)(I − J)(I +M0) +

1

4
(I +M0)(I +M1)L

?
2(I +M1)(I +M0)

≈ε . . .

≈ε
1

2
(I − J) +

(
k−1∑
i=0

1

2i+2
Wi

)
+

1

2k+1
Rk

where Rk = (I + M0) · . . . · (I + Mk−1)(I −Mk)
?(I + Mk−1) · . . . · (I + M0). Finally, Lk ≈δ I − J

and this implies Rk ≈δ Wk.

6.3 Obtaining a constant error approximation

Note that if we want a constant error approximation, in order to use Lemma 20 we need each
ε = 1

O(logn) so that kε is constant for k = O(log n) (and we need k = O(log n) to reach a good

enough approximation of I − J). This, in turn, implies that we need to take c, the degree of the
expanders, to be poly-logarithmic in n.

7 Construction for low ε

It is left to show that by investing extra O(log n log log(n/ε)), we can boost our 1
2 -approximation

to an ε-approximation. This follows from the following nice lemma:

Lemma 21. Let A,P be real symmetric and invertible matrices of dimension n so that there exists
ε for which (1− ε)P−1 ≤ A ≤ P−1. Then, Pk =

∑k
i=0 P (I −AP )i satisfies(

1− εk+1

1− ε

)
A−1 ≤ Pk ≤ A−1

For the proof of the above lemma, and how to use it in order to get Theorem 13, see [2].
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