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Solving Laplacian systems space-efficiently

Amnon Ta-Shma and Dean Doron

1 The Moore-Penrose pseudo-inverse

Definition 1. Let L be any matriz. The Moore-Penrose pseudo-inverse of L, L*, is the unique
matriz satisfying all of the following:

1. LL*L = L.

2. L*LL* = L.

3. LL* is Hermitian.

4. L*L is Hermitian.

The SVD gives us a way to compute the pseudo-inverse.

Lemma 2. Let L = UXVT be the SVD of L. Then, L* = VX*UT, where ¥* is obtained by taking

the reciprocal of each mon-zero element on the diagonal, leaving the zeros in place.

When L is normal and has non-negative eigenvalues (e.g., when G is regular), the SVD coincides
with the spectral decomposition. Thus:

Lemma 3. Assume that L is Hermitian with eigenvalues 0 = A\, < ... < A1. Then, L* has the

same eigenvectors as L and eigenvalues Xy < ... < \], where X} = )\i_l if A; # 0 and 0 otherwise.

2 The Laplacian

Let M be a transition matrix of an undirected graph G over n vertices (that is, M = AD~! where
A is the adjacency matrix of G and D is its degree diagonal matrix). The normalized Laplacian of
G is

L =1—-M,

and is an important operator in many areas of science. We make a few simple observations:

1. M is similar to the Hermitian matrix D~/12M D2 = D=1/2AD~/2, and so L has real eigen-
values satisfying 0 = A\, < ... < )\ <2/ ie., Lis PSD.

2. G is connected if \,—1 = v(G) > 0, where v(G) is the spectral gap of G.

We would like to solve the linear system Lx = b space-efficiently, and present a solution due to
Murtagh, Reingold, Sidford and Vadhan [2]. As L is not invertible (0 is an eigenvalue), we need
to work with a generalized inverse. For undirected graphs, the Moore-Penrose pseudo-inverse is a
natural choice.

In fact, we can (and will) assume w.l.o.g. that G is regular. Indeed,



Lemma 4. Suppose G is an undirected graph with adjacency matriz A, degree matrix D, and
transition matric M = AD™'. Let E a diagonal matriz of self-loops to make the graph d-reqular.
Then, Let L = I — M be the original Laplacian and L' = I — %(A + E) the new Laplacian. Then

Proof. First, LD = (I—M)D = D—A=D+E—(A+E) = dl —(A+E) = d(I - 3(A+E)) = dL".
Now we check that D(L')* satisfies the four conditions above (and notice that L’ and its pseudo
inverse are normal). O

This way, we can also make sure that G is aperiodic.

We now need to justify that the pseudo-inverse indeed helps us solving linear equations.

Claim 5. If the linear system Lx = b has a solution then a solution is given by x = L*b.

Proof. Let xq be a solution, so Lxg =b. Then LL*b = LL*Lxzy = Lzg = b. Hence, L*b is a solution
to the system. O

In fact, a full characterization of the solutions of Lx = b is known, but we will not get into the
details.

3 A PSD partial order

Definition 6. Let A be a symmetric real matriz. The following is equivalent:

o For every v € R™ it holds that vi Av >0,

o All the eigenvalues of A are non-negative.

If any condition happens we say A is positive semi-definite, and denote A > 0. We write A < B if
B—-—A>0.

Given a d-regular graph G (we assume w.l.o.g. that d is a power of two), we want to approximate
the entries of L*. We use the spectral approximation of matrices.
Definition 7. Let X, Y be real, symmetric matrices. We say that X ~.Y ife - X <Y <e-X.

The above notion of approximation is seemingly weaker than approximation in the ¢,,-norm. How-
ever, for the purpose of approximating a solution to a Laplacian system, it suffices:

Claim 8. Assume L* ~. L* and b € Image(L). Then, ||L*b— L*b

| <elL.
Proof. See Appendix D (or Lemma 8.3) of the MRSV paper. O

We record some useful facts about the spectral approximation. We start with expected facts:

Claim 9. Let X,Y, W, Z be real, symmetric, positive semi-definite matrices. Then:



1. If X ~. Y thenY ~. X.

If X =. Y and c is a non-negative real number then cX ~; cY .
If X~ Y and W . Z then X + W . Y + Z.

If X =, YandY =, Z then X ~; ¢, Z.

SR

If X~ Y thenl® X~ IQY.

All the above items are straightforward.

We now record two other facts:

1. If X ~. Y and M is any matrix then MIXM ~. MY M.
2. If X ~.Y and ker(X) = ker(Y) then X* ~_ Y*.

The first inequality is straight forward but quite useful, and does not hold with, e.g., operator norm
approximation. Let us prove the second one.

Claim 10. If X ~. Y and ker(X) = ker(Y) then X* ~. Y™*.

Proof. Let v € R™ and write v = a + b where a belongs to ker(X) = ker(Y') and b belongs to the
kernel’s orthogonal complement. As ker(X*) = ker(X), it holds that v X*v = bT X*b and likewise
for Y. Thus, we can restrict ourselves to the invertible subspace, assume w.l.o.g. that X, Y > 0 and
prove that X ~. Y implies X ' ~, Y~!. In fact, we will show that for general A,B >0, A < B
implies B~! < A~! and the claim will follow by first taking B = ¢°X and A =Y and then taking
B=Y and A=e"°X.

Let A,B > 0 such that A < B. As B > 0 it has a unique positive definite square root. Let
M = \/E_IA\/E_I, and so M~! = v/BA-1\/B. Note that M < I if and only if M-1>T. Now,
A < B implies M < I by multiplying both sides by \/E_1 , and thus M~! > I. Multiplying again
both sides by \/Eil gives A1 > B~ as required. O

4 A second look at derandomized squaring

4.1 Expnders

Even if you take a very good expander G it will not be the case that G ~ J, because a non-zero
number cannot be multiplicatively close to zero. However, with the Laplacian things are different:

Claim 11. Let G be a d regular, undirected graph with transition matric M. Let L = I — M. Then,

L %)\(G) I—J.

Proof. We can express M = 43, \; [v;)(v;| with Ay = d and |v1)(v1| = J. Hence,
L=I-M=I-J-C

where C' =} .5 A [vi) (vil, |C]| < A(G) and C, I, J commute. For every i > 2, er<1 -\ <1,
because (1 — \)e* > 1. O



Next, we turn to derandomized squaring.

Lemma 12. Let G be a d-reqular, undirected, aperiodic graph on n vertices with transition matrix
M and H be a reqular graph over d vertices. Then,

I— M =y I — Meon,
where Magm is the transition matriz of GOH.

Proof. Using the notations of previous lectures, Mggnr = PMHML. Using Claim 9, we can
conclude the following;:
I - PMHML=PMIML —~ PMHML
= PM(I®(I—H)ML
=dML)(I® (I~ H)ML
~aamy d(ML) (I (I —J)ML

= PM(I - J)ML
= PMIML — PMJML
=1— M?>

5 Approximating L* space-efficiently

We prove:

Theorem 13 ([2]). Given an undirected graph G over n wvertices with a Laplacian L and € >

0, there exists a deterministic algorithm that computes L*, where L* =~. L*

O(lognloglog(n/e)).

, TUNNING 1N Space

We remark that with a probabilistic algorithm, one can do it in space O(log(n/¢)) [1].

Our main tool, together with a clever identity, will be our well-known derandomized squaring. We
shall see that the derandomized squaring does not only improves a graph’s connectivity but can
also replace the original squaring when it comes to approximating a solution to a Laplacian system!

We will prove the theorem for constant error .

Lemma 14. Given an undirected graph G over n wvertices with a Laplacian L, there exists a
deterministic algorithm that computes L*, where L* =5 L*, running in space O(lognloglogn).

Proof. Assume w.l.o.g. that G is d-regular, with d/2 self-loops on every vertex. Fix k = O(logn),
¢ = poly(logn). Define the sequence of graphs Gy = G, ..., G} where

G; = G;—1®H;

and every H; is a c-regular expander over d-c'~! vertices with k- A\(H;) < i. There are easy explicit
H,L' like that.



Let My, ..., My, be the transition matrices of Gog = G, ..., Gj. Since we take k = O(logn) we have
AMMy) < 1

We define
Wi={U~+My)-...-(I+M;))I—J)I+M;)-...-(I+ My).

for all i € {0,...,k—1}.
Let
— 1 Gl 1
=0

The space complexity follows from the following two claims (and composition of space-bounded
computations). First, iterated derandomized squaring can be computed in small space:

Claim 15. Ewvery coordinate of every M; can be computed in space O(log n+klogc) = O(lognloglogn).

Second, it is not difficult to verify that:
Claim 16. Fvery coordinate of the multiplication of k matrices of dimension n can be computed

in space O(logn -logk).

Together, this shows that EB* can be computed in O(logn - loglogn) space.

In the next section we turn to the correctness proof. O

6 Correctness

6.1 Expressing the Laplacian of M with that of M?

First, let us see a nice matrix identity, following [3], that expresses the pseudo-inverse of the
Laplacian of G via the pseudo-inverse of the Laplacian of G2.

Lemma 17. If L = I — M s the normalized Laplacian of an undirected, connected, reqular,
aperiodic graph on n vertices then

(I-My*=L" = - (I—J+I+M)(I-M)*(I+M))

N |

Proof. The matrices I, M, J, U — M? are symmetric and commute. Furthermore, we saw that also
(I — M?)* commute with them. So L* commutes with L and the share the same orthonormal basis.
It is enough to compare eigenvalues.

Let v be an eigenvector of L = I — M with eigenvalue \. Because of (I — M?)* we have a different
behaviour with A =0 and A # 0. For A = 0 we get v is all the one vector, Jv = v = Mv = v and
(I — M?)*v = 0. So the RHS on v is 0. Clearly (I — M)*v so an equality holds.

Let v be an eigenvector of L with eigenvalue A # 0, sov L 1. Thus, (I—J)v =v, ([+M)v = (1+N)v

and (I — M?)*v = 1JA2v. Altogether,

1 1(1+))? 1
— — 2\x = - —_ = = *
(I—J+{T+M)I—-M)I+M))v SRR v s U A

N



Applying the above identity k times:

(I-M)*=L*"= %(I —J)+ %(I+ M)(I — M**(I + M)

:%(I—J)+i(I+M)(I—J)(I+M)+%(I+M)(I+M2)(I—M4)*(I+M2)(I+M)
1 kol 1 1 ok ok+1, ok
=5~ )+ ZWPZ’ o (L M) (L M) = M) M) (1 M)

i=0
where for all ¢ € {0,...,k — 1},

Po=+M)-....(I+M*T-J)I+M¥)...-(I+M).

To summarize:

Lemma 18 ([3]). Let My, ..., My be symmetric matrices such that L; = I —M; >0, L; = [ — M? |
(i.e., M; = M? ). Then,

k-1
1 1 1
(I = Mo)* = 5(—7* J) + (Z 2i+2Wi> Ry Ry
=0

where Wy = (I+Mo)-...-(I+M;)(I—J)IT+M;)-...-(I+Mpy) and R, = (I+Mo)(I+My)...(I+
Mk)(f — Mk+1)(1+ Mk) ... (I+ Mo).

6.2 Approximating the Laplacian of M with approximations of the Laplacian
of M?
Let us recap. We have a sequence of graphs Gog = G, ..., G where
Gi = G;-10H;

and every H; is a c-regular expander over d - 1 vertices with MH;) <e= ﬁ. We let M; denote
the transition matrix of G; and L; = I — M;. In Lemma 12 we have seen that

Liyr =1 — Miy1 = I — Ma,on, ~am,) I — M,
ie., Lit1 ~c [ — M2
Claim 19. L} = (I — M;)* ~ (I — J + (I + M;)L5 (I + M;)), for every i € {0,...,.k—1}.
Proof. As we noted before L; = (I — M;), I+ M;, (I —M;)*,(I—M2?)*,1,J commute, and therefore
the two matrices on the both sides of the claim share the same orthonormal eigenvector basis.

Furthermore, they share the same kernel. By Claim 10, L}, | ~. (I — M2)*. By Claim 9, we can
multiply both sides by I + M; and get

(T + M) Liy (1 + My) e (I+ M)(I — MP)*(I + M;).
Again by Claim 9, we can multiply both sides by % and add %(I —J)>0,s0

1 1
U =J+ T+ M)Liy (T + My)) me 5 = J + (I + Mi) (1 - MA*(I+ M;)) = (I — My)* = L,
where we have used Lemma 17. O



Lemma 20 ([3]). Lete,6 > 0 and let My, ..., My be symmetric matrices such that L; = I —M; > 0,
Li=~cI—M?, and Ly ~5 I — J. Then,

k—1
) 1 1 1
1=0

where Wy = (I + M) -...- (I +M;)(I —J)I + M;)-...- (I + Mp)..

Proof.
1
Ly = (I—Mp)* e (I =T+ (I + M) Li(I + My))
1 1 1
R E(I —-J)+ Z(I + Mo)(L — J)(I + My) + Z(I + Mo)(I + My)L5(I + My)(I + M)
e
k—1
1 1 1
1=0
where Ry = (I+ M()) e (I + Mkfl)(f — Mk)*(f + Mkfl) e (I + M()) Finally, Ly ~5 I — J
and this implies Ry ~5 W. ]

6.3 Obtaining a constant error approximation

Note that if we want a constant error approximation, in order to use Lemma 20 we need each
€= m so that ke is constant for & = O(logn) (and we need k& = O(logn) to reach a good
enough approximation of I — J). This, in turn, implies that we need to take ¢, the degree of the
expanders, to be poly-logarithmic in n.

7 Construction for low ¢

1

It is left to show that by investing extra O(lognloglog(n/e)), we can boost our ;-approximation

to an e-approximation. This follows from the following nice lemma:

Lemma 21. Let A, P be real symmetric and invertible matrices of dimension n so that there exists
e for which (1 —¢)P~1 < A< P7'. Then, P, = E?:o P(I — AP)? satisfies

€k+1
(1— >A‘1§Pk§A‘1
1—¢

For the proof of the above lemma, and how to use it in order to get Theorem 13, see [2].
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