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Extractors

Amnon Ta-Shma and Dean Doron Scribe: Noam Parzenchevski

1 Motivation

Consider the following scenario: Alice and Bob hold a random string x ∈ {0, 1}n and wish to use it
to communicate securely. Meanwhile, Eve gained access to n/3 bits of information about x. Can
Alice and Bob somehow modify x to get an x′ of length roughly 2n/3 which would appear (almost-)
random to Eve?

In this lecture we will try to achieve this goal - given a “flawed” distribution X ⊆ {0, 1}n along with
a small auxiliary random seed d, we will construct a distribution X ′ which is ε-close to uniform
over {0, 1}m (where m < n), while trying to minimize d and maximize m.

2 Preliminaries

A good measure of the amount of “randomness” in a distribution is its min entropy:

Definition 1. (weak source) Let X be a distribution over {0, 1}n. The min-entropy of X is
H∞(X) = log 1

maxaX(a) . We say X is a k-source if H∞(x) ≥ k, or, equivalently, Pr(X = x) ≤ 2−k

for every x ∈ X.

As an example, Ud, the uniform distribution over {0, 1}d, is a d-source.

Definition 2. (statistical distance) For two distributions X,Y ⊆ Ω, we define the statistical dis-
tance:

|X − Y | = 1

2
·
∑
x∈Ω

|Pr[X = x]− Pr[Y = x]| = max
Λ⊆Ω
|Pr[X ∈ Λ]− Pr[Y ∈ Λ]|

If |X − Y | 6 ε we say that X is ε-close to Y . We will sometimes omit the 1
2 factor.

The statistical distance between two distributionsX,Y captures the best way to distinguish between
the two. It is not hard to see that the test T ⊆ Ω which separates X and Y best is the test
defined by T = {x ∈ Ω | Pr[X = x] > Pr[Y = x]} the distance given by this test is exactly
Pr[X ∈ T ]− Pr[Y ∈ T ].

We’re now ready to define an extractor:

Definition 3. (extractor) Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a function

• Let F be a family of distributions over {0, 1}n. We say Ext is an (F , ε)-extractor, if for every
X ∈ F , |E(X,Ud)− Um| ≤ ε.

• We say Ext is a (k, ε)-extractor, if it is an (F , ε) extractor for the family F of all k-sources.

1



We think of Ext(X,Ud) as a random variable defined as follows: Pick an x ∼ X, independently pick
y ∼ Ud, and output Ext(x, y).

Before we proceed, we want to show that wlog, when talking about k-source we can consider only
flat sources (that is, uniform sources over 2k elements). We first claim:

Claim 4. Any k-source X is a convex combination of flat sources over 2k elements

Proof. Any k-source X over {0, 1}n can be defined by the following system of linear equations
where Pr[X = xi] = pi :

•
∑2n

i=1 pi = 1

• For any i : 0 6 pi 6 2−k

This set of equations defines a convex polytope whose vertices are given by sources where the
maximal number of inequality constraints are satisfied tightly. I.e. - for any i : pi ∈ {0, 2−k}. By
convexity, any point in the polytope can be expressed as a convex combination of the vertices of
the polytope. The claim follows

With that, we prove the following:

Claim 5. If Ext : {0, 1}n ×{0, 1}d → {0, 1}m is an ε-extractor for the family of flat k-sources then
it is a (k, ε)-extractor

Proof. Let X be a k-source. By Fact 4 we can write X =
∑
λiFi where 0 6 λi 6 1,

∑
λi = 1 and

Fi are flat sources. Let Fmax = maxFi |Ext(Fi, Ud)− Um|. If we think of X as picking a flat source
Fi w.p. λi and then sampling Fi, it is easy to see that:

|Ext(X,Ud)− Um| =
∣∣∣∑λi (Ext(Fi, Ud − Um)

∣∣∣
6
∑

λi |Ext(Fi, Ud)− Um|

6
(∑

λi

)
|Ext(Fmax, Ud)− Um|

6 |Ext(Fmax, Ud)− Um|
6 ε

As a warm-up, we show that there are no deterministic extractors for general k-sources. Indeed,
even if we get n− 1 bits of entropy we cannot output a single uniform bit:

Claim 6. For any Ext : {0, 1}n → {0, 1} there exists an (n− 1)-source X s.t. |Ext(X)− U1| = 1

Proof. Assume wlog that |Ext−1(0)| > 2n−1 (otherwise take Ext−1(1)) and let X be the uniform
distribution over Ext−1(0). Clearly, X is an (n − 1)-source, however, Ext(X) = 0, thus |Ext(X) −
U1| = 1
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3 Affine extractors

As an example, we first turn our attention to a specific family of distributions - uniform distributions
over affine spaces:

Definition 7. (Set of affine spaces) For a vector space V of dimension n, let

Affnn,k = {A ⊆ V : ∃z ∈ V and a subspace U ⊆ V s.t. dimU = k and A = U + z}

Each X ∈ Affnn,k induces a distribution which is simply the uniform distribution over X. In this
lecture, we will consider only the case V = Fn2 .

Clearly, Affnn,k is a family of k-sources. We will use the fact that it is a fairly small family to show
the existence of a deterministic extractor against this family.

Theorem 8. For all k > 2 log n + 2 log(1
ε ) + O(1) there exists an (Affnn,k, ε)-extractor Ext :

{0, 1}n → {0, 1}m where m = k − 2 log(1
ε )−O(1)

Proof. We us the probabilistic method. For a distribution X ∈ Affnn,k and S ⊆ Fm2 we’ll say that
Ext fails on (X,S) if: ∣∣∣∣ Pr

x∈X
[Ext(x) ∈ S]− ρ(S)

∣∣∣∣ > ε

By the definition of statistical distance, it is easy to see that if Ext passes over all (X,S) ∈ Affnn,k×
Fm2 then it is an (Affnn,k, ε)-extractor.

Fix then a pair (X,S). For each element x ∈ X define the indicator r.v. Yx = 1 iff Ext(x) ∈ S.
Note that Prx[Ext(x) ∈ S] = 1

2k

∑
x′ Yx′ . Clearly, for a random Ext we have 1

2k
E(
∑

x Yx) = ρ(S),
thus by Chernoff:

Pr
Ext

[∣∣∣∣ Pr
x∈X

[Ext(x) ∈ S]− ρ(S)

∣∣∣∣ > ε

]
6 2−2ε22k

By a union bound:

Pr
Ext

[∃(X,S) : Ext fails on (X,S)] 6 |Affnn,k| · P(Fm2 ) · 2−2ε22k

6 2n
choose z

(
2n

k

)
choose U

· 22m · 2−2ε22k

6 2n(k+1)−ε22k · 22m−ε22k

So it suffices to require both:

1. 2n(k+1)·2−ε22k < 1 for which k > 2 log n+ 2 log(1
ε ) +O(1) suffices

2. 22m·2−ε22k < 1 which implies k > m+ 2 log(1
ε ) +O(1)

The claim now follows

It is worth noting that the proof above did not use the structure of the source (the fact that it is a
shift of a linear subspace) but only the fact that the size of the family of subspaces is small. Our
next (and main) task will be to construct extractors against general k-sources.
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We’re now ready to construct our extractors. Before we start we mention that via a probabilistic
argument similar to the one presented above one can show the existence of (k, ε)-extractors where
d = log(n − k) + 2 log(1

ε ) + O(1) and m > k + d − 2 log(1
ε ) − O(1). Additionally, known lower

bounds state that any (k, ε)-extractor must have both d > log(n − k) + 2 log(1
ε ) − O(1) and m 6

k + d− 2 log(1
ε )−O(1), see for example [RTS00], Theorem 1.9.

4 Constructing extractors from expanders

We present two constructions based on expander graphs. Throughout this section we denote by
captital letters exponential cardinality, e.g. - A = 2a.

4.1 First attempt - single step on an expander

Theorem 9. Let k = n−O(1) then there exists a (k, ε)-extractor:

Ext : {0, 1}n × {0, 1}d → {0, 1}n

Where d = 2 log(1
ε ) +O(1)

Proof. Given an (N,D, λ)-expander G = (V,E), we have a natural function Ext : [N ]× [D]→ [N ]
induced by the structure of the graph: ∀x ∈ V : Ext(x, i) = x[i]. A flat k-source over V is simply a
subset X ⊆ V s.t. |X| = K and we can think of Ext(X,Ud) as picking a vertex in x ∈ X u.a.r and
then stepping along a random edge of x u.a.r to a neighbor y. As before, we want to require that
for any k-source X and S ⊆ V we have∣∣∣∣ Pr

x∈X,i∈[D]
[Ext(x, i) ∈ S]− ρ(S)

∣∣∣∣ 6 ε

As X, [D] are flat, it is easy to see that

Pr
x,i

[Ext(x, i) ∈ S] =
|E(X,S)|
|X| ·D

And from the Expander Mixing Lemma we know that for any X,S as above:∣∣∣∣ |E(X,S)|
|X| ·D

− ρ(S)

∣∣∣∣ 6 λ

√
ρ(S)

ρ(X)
6 λ

√
ρ−1(X) = λ · 2−

k−n
2

Thus it suffices to require λ · 2−
k−n
2 6 ε. Assuming G is Ramanujan we have λ ∼ 2√

D
thus we need

2√
D
· 2−

k−n
2 6 ε which rearranges to D > Ω

(
2n−k

ε2

)
or equivalently d = (n− k) + 2 log(1

ε ) +O(1) =

2 log(1
ε ) + O(1). We note that by the lower bound of [RTS00], this is tight up to the constant

factor

4.2 Second attempt - walking on an expander

Our previous construction worked only when the entropy deficiency n − k was constant, we now
construct extractors with logarithmic seed length which work for k-sources where k is some constant
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fraction of n and ε is a constant. Let G be an (M,D, λ)-expander as before. As in the previous
section we will use our expander to construct a bipartite graph which induces an extractor, but
this time we will consider the left side of the graph to be all length t-walks on G and the right side
as the vertices of G. We will connect each path with all vertices that lie on said path. It is easy
to see that this construction yields a ([N = MDt], [M ], t) bipartite graph Gpath, which induces a
Ext : [MDt]× [t]→ [M ] extractor. In what follows we will analyze the extraction properties of this
function.

Recall the definition of a sampler. Informally, a sampler is a bipartite graph where for each subset
T of the right side, most vertices on the left side fall into roughly the density of T . In this sense,
sampling vertices from the left side approximates the density of subsets on the right side. Formally:

Definition 10. (Sampler) A D-left regular bipartite graph S = (A,B) is a (δ, ε)-sampler if for any
T ⊆ B we have:

|BadT | = |{ε-bad elements in A w.r.t T}| 6 δ|A|

Where we say that v ∈ A is bad w.r.t T if:∣∣∣∣ Pr
i∈[D]

[v[i] ∈ T ]− ρ(T )

∣∣∣∣ > ε

We think of S as a function S : [A]× [D]→ [B] as before.

Claim 11. If S = (A,B) is a (δ, ε)-sampler then it is also a (k, 2ε)-extractor for k = log
(
δ|A|
ε

)
Proof. As before, we know that S is a (k, 2ε)-extractor iff for all X ⊆ A of size |X| = K = δ|A|

ε we
have:

∀T ⊆ B :

∣∣∣∣Pr
x,i

[S(x, i) ∈ T ]− ρ(T )

∣∣∣∣ 6 2ε

Now, clearly:
Pr
x,i

[S(x, i) ∈ T ] 6 Pr
x

[x ∈ BadT ] + Pr
x,i

[S(x, i) ∈ T | x /∈ BadT ]

By our choice of K, Prx [x ∈ BadT ] 6 ε, and by defintion Prx,i [S(x, i) ∈ T | x /∈ BadT ] = ρ(T )± ε,
thus together Prx,i [S(x, i) ∈ T ] 6 ρ(T ) + 2ε and therefore

∀T ⊆ B :

∣∣∣∣Pr
x,i

[S(x, i) ∈ T ]− ρ(T )

∣∣∣∣ 6 |ρ(T ) + 2ε− ρ(T )| = 2ε

as needed

By the expander Chernoff bound [Hea08], we know that for any subset S ⊆ M and a t-long walk
v1, . . . , vt if we let Ivi∈S be an indicator for vi ∈ S we have

Pr

[∣∣∣∣∣1t∑
i

Ivi∈S − ρ(S)

∣∣∣∣∣ > ε

]
6 δ = 2e−

ε2·γ·t
4

Where γ = 1 − λ. It is easy to see that this is equivalent to saying that Gpath is a (δ, ε)-sampler,
thus by Claim 11 if k = δN

ε then Ext is (k, 2ε)-extractor.

An immediate corollary therefore is:
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Theorem 12. For any ε, α there exists a ζ = Ω(ε2 · α) for which there exists a (k = (1 − ζ)n +
log(1

ε ), 2 · ε)-extractor
Ext : {0, 1}n × {0, 1}r → {0, 1}m

with r 6 logαn and m = (1− α)n

Proof. Given n, α, we set m = (1−α)n and take our original graph G to be an (M = 2m, D = 2d, λ)-
expander where D and λ < 1 are absolute constants. We now build Gpath on N = 2n vertices.
We consider each vertex as a register specifiying an initial vertex in G (given by m bits) and t
instructions for the next step, each given by d bits. Thus, we require n = m+ td = (1− α)n+ td

or equivalently, t = αn
d (note: r

def
= log t = log αn

d 6 logαn).

Next, we know that if K = δN
ε then Gpath induces a (k, 2ε)-extractor. Thus, we set:

K =
δN

ε
=

1

ε
· 2e−

ε2γt
4 · 2n =

1

ε
· 2e−

ε2γ(n−m)
4·d · 2n =

1

ε
· 2e−

ε2γαn
4·d · 2n = 2n(1− γ

4·d ·ε
2α)+log( 1

ε
)

as d, γ are absolute constants, the claim follows by setting ζ = γ
4·d · ε

2α

We note that for any constants ε, α, Ext is a (k, 2·ε)-extractor with logarithmic seed length requiring
min-entropy of a constant fraction of n as promised in the beginning of the section.

5 Condensing randomness

We want to conclude by addressing the case where we are given a k-source such that k � n. Let us
assume that we have some extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m which requires a seed of length
d = Θ(log2 n

ε ). Given a k-source X, if we were first able to convert X → X ′ where X ′ is a k′-source

over {0, 1}n
′

with n′, k′ ∼ k then we could apply the above extractor using only d′ = Θ(log2 k
ε )

truly random bits. For the case where k � n, the difference between d, d′ could be prohibitive. It
turns out that such a goal is possible, and for that we introduce the notion of condensers:

Definition 13. (Condenser) A function:

C : {0, 1}n × {0, 1}d → {0, 1}m

is a k →ε k
′ condenser if for any k-source X it holds that C(X,Ud) is ε-close to some k′-source.

Furthermore, if k′ = k + d we say that C is lossless.

In a (fairly) recent line of work, lossless condensers were built with optimal parameters. We cite
without proof the following condenser due to [GUV09], which is based on the Parvaresh-Vardy
error correcting code:

Theorem 14 ([GUV09]). There exists an explicit, lossless, k →ε k + d condenser:

C : {0, 1}n × {0, 1}d → {0, 1}m

where d = O(log n+ log(1
ε )) and m = 1.0001(k + d)

With this condenser, a general scheme for building an extractor would be to work in two steps.
Given a source over {0, 1}n we first apply a condensing step and then extract the randomness using
e.g. our expander walk extractor:

{0, 1}n →C {0, 1}1.0001k →Ext Um

giving us a (k, ε)-extractor with d = O(log n
ε ) and m = Ω(k)
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