0368-4283: Space-bounded computation

Take-Home Exam

Amnon Ta-Shma and Dean Doron

General instructions:

- 1. The deadline for the exam is 12/07/18.
- 2. Submit your (typed) solution by mail to amnon@tau.ac.il and deandoron@mail.tau.ac.il.
- 3. Work must be done alone.
- 4. If you had to use an electronic source, state it explicitly within the relevant question.

Question 1

ZPL is the probabilistic, logspace class with zero-sided error (for every input, with probability at least half the answer is the correct one, and otherwise it is quit). Let ZPL^{*} be the variant of ZPL where the machine has *multiple* access to the random tape.

Prove that $\mathsf{BPL} \subseteq \mathsf{ZPL}^*$.

Question 2

We want to find an explicit, polynomial-length UTS for consistently labeled undirected d-regular graphs over n vertices with $\bar{\lambda} < \frac{3}{4}$. Call this family of graphs \mathcal{G}_n .

Definition 1. $\sigma \in [d]^*$ is a UTS for \mathcal{G}_n , if for every $G = (V, E) \in \mathcal{G}_n$, $v \in V$, walking on G from v according to σ reaches all the vertices in the graph. σ is explicit, if there exists an algorithm running in poly(n) time outputting it.

Definition 2. We say $S \subseteq [d]^*$ is good for (G, v_0) $(G \in \mathcal{G}_n)$ if there exists $\sigma \in S$ such that for every vertex v, a walk over G according to σ starting from v will visit v_0 . We say S is explicit if |S| is polynomial, and there exists a poly(n) algorithm that given $i \in [|S|]$ outputs the *i*-th string in S.

- 1. Show that given an explicit S that is good for (G, v_0) for every $G \in \mathcal{G}$ and v_0 , one can construct an explicit UTS for \mathcal{G} .
- 2. Construct a sequence of sets $S_i \subseteq [d]^*$ such that

$$S_0 = \{\varepsilon\}, \ S_{i+1} = \{utu : u \in S_i, t \in [d]\}.$$

Fix $G = (V, E) \in \mathcal{G}$ and v_0 . Define

 $R_{G,v_0}^{-1}(\sigma) = \{ v \in V \mid \text{The walk on } G \text{ from } v \text{ according to } \sigma \text{ vists } v_0 \}.$

Define

$$r_i = \max_{\sigma \in S_i} |R_{G,v_0}^{-1}(\sigma)|.$$

Prove that $r_0 = 1$ and $r_{i+1} > r_i + \delta$, where $\delta = \frac{r_i(n-r_i)}{4n}$. Guidance:

- Choose $\sigma \in S_i$ that attains r_i . Show that walks according to σ from $V \setminus R_{G,v_0}^{-1}(\sigma)$ end in exactly $n r_i$ vertices. Denote these vertices by B. Show that there exist enough edges between $R_{G,v_0}^{-1}(\sigma)$ and B.
- 3. Show that $r_k = n$ for $k = O(\log n)$.
- 4. Conclude an explicit UTS. What is its cardinality as a function of n and d?

Question 3

In this question we will construct PRGs fooling "almost-balanced" halfspaces. Given $w \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$, the halfspace $H_{w,\theta}$: $\{1, -1\}^n \to \{1, -1\}$ is the function $H_{w,\theta}(x) = \operatorname{sign}(\langle w, x \rangle - \theta)$.

Definition 3. We say $G: \{0,1\}^{\ell} \to \{1,-1\}^n \varepsilon$ -fools $H_{w,\theta}$ if

$$\left| \mathbb{E}[H_{w,\theta}(U_{\{1,-1\}^n})] - \mathbb{E}[H_{w,\theta}(G(U_\ell))] \right| \le \varepsilon.$$

We measure distance between real-valued distributions P, Q by the CDF distance,

$$d(P,Q) = \left\| \operatorname{CDF}(P) - \operatorname{CDF}(Q) \right\|_{\infty} = \max_{t \in \mathbb{R}} \left| \Pr_{x \sim P}[x < t] - \Pr_{x \sim Q}[x < t] \right|.$$

1. Fix $w \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$. Prove that if $G: \{0,1\}^{\ell} \to \{1,-1\}^n$ is such that

$$d(\langle w, G(U_{\ell}) \rangle, \langle w, U_{\{1,-1\}^n} \rangle) \le \varepsilon$$

then G 2ε -fools $H_{w,\theta}$.

We will assume ||w|| = 1, as this can be done without loss of generality. We say a unit-norm $w \in \mathbb{R}^n$ is η -balanced if $||w||_{\infty} \leq \eta$. We say a halfspace $H_{w,\theta}$ is η -balanced if w is.

Fooling monotone BPs and a first try at fooling halfspaces

Throughout, all of our BPs are read-once.

Definition 4. Given a $[W,T]_{\Sigma}$ BP M and a vertex v at layer i, we let $Acc_M(v)$ be the set of all $z \in \Sigma^{T-i}$ such that starting from v, M accepts z. We say M is monotone if for every layer i there exists an ordering v_{i_1}, \ldots, v_{i_W} of the vertices in layer i such that if j < k then $A_M(v_j) \subseteq A_M(v_k)$.

2. Prove that for any $w \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$ there exists a monotone $[W, n]_{\Sigma = \{-1,1\}}$ BP M that solves $H_{w,\theta}$ for some W.

Definition 5. Given a $[W,T]_{\Sigma}$ BP M, we say that the BPs M_{down} and $M_{up} \varepsilon$ -sandwich M if:

- For every $z \in \Sigma^T$, $M_{down}(z) \le M(z) \le M_{up}(z)$.
- $\Pr[M_{up}(U) = 1] \Pr[M_{down}(U) = 1] \le \varepsilon.$
- 3. Prove that for any monotone $[W, T]_{\Sigma}$ BP M there exists M_{down} and M_{up} that ε -sandwich M with width $\frac{2T}{\varepsilon}$ (note that it is independent of the original width W).
- 4. Prove that if $G: \{0,1\}^{\ell} \to (\Sigma)^T \delta$ -fools monotone $[\frac{2T}{\varepsilon}, T]_{\Sigma}$ BPs then it also $(\varepsilon + \delta)$ -fools monotone $[W, T]_{\Sigma}$ BPs for arbitrary W.
- 5. Prove that if $G: \{0,1\}^{\ell} \to (\Sigma)^T \delta$ -fools monotone $[\frac{2T}{\varepsilon}, T]_{\Sigma}$ BPs then

$$d(\langle w, G(U_{\ell}) \rangle, \langle w, U_{\{1,-1\}^n} \rangle) \le O(\varepsilon + \delta).$$

and conclude that there exists an explicit PRG that ε -fools any halfspace on n variables with seed-length $O(\log^2 \frac{n}{\varepsilon})$.

A second try at fooling balanced halfspaces

In this section you may use the following theorem, which is a corollary of the Berry-Esseen theorem.

Theorem 6. Let Y_1, \ldots, Y_t be independent random variables with $\mathbb{E}[Y_i] = 0$, and denote $\sum_i \mathbb{E}[Y_i^2] = \sigma^2$ and $\sum_i \mathbb{E}[Y_i^4] = \rho$. Let $S_n = \frac{1}{\sigma} \sum_i Y_i$. Then,

$$d(S_n, \mathcal{N}(0, 1)) \leq \frac{\sqrt{\rho}}{\sigma^2},$$

where $\mathcal{N}(0,1)$ is the normal distribution with mean 0 and variance 1.

To define the construction, given n and η we set $t = \frac{1}{\eta^2}$ and require the following ingredients:

- A 2-UFOHFs $\mathcal{H} \subseteq \{h \colon [n] \to [t]\}$, such that $\forall_{i \in [t]}, |h^{-1}(i)| = |\{x \in [n] \mid h(x) = i\}| = \frac{n}{t}$.
- A 4-UFOHFs $\mathcal{F} \subseteq \{f: [\frac{n}{t}] \to \{1, -1\}\}$, i.e., if we let Y_i be the random variable with value f(i) where f is uniform over F, then for every distinct $i_1, i_2, i_3, i_4 \in [\frac{n}{t}], (Y_{i_1}, Y_{i_2}, Y_{i_3}, Y_{i_4}) = U_{\{1,-1\}^4}$. For $f \in F$ we let $string(f) \in \{-1,1\}^{n/t}$ be the string that at location i has value f(i).

For $x \in \Sigma^n$ and $S \subseteq [n]$, we let $x_{|S}$ denote the substring of x keeping only locations indexed by S (so $x_{|S} \in \Sigma^{|S|}$). Define $G: \mathcal{H} \times \mathcal{F}^t \to \{1, -1\}^n$ by

$$G(h; f_1, \ldots, f_t) = x_t$$

where $x_{|h^{-1}(i)} = string(f_i)$ for every $i \in [t]$.

- 6. Show the construction can be efficiently implemented with seed length $O(\frac{\log n}{n^2})$.
- 7. Prove that when w is η -balanced, $\langle w, U_{\{1,-1\}^n} \rangle$ is η -close to $\mathcal{N}(0,1)$ in the CDF distance.
- 8. Fix $h \in \mathcal{H}$ and let the probability space be choosing $f_1, \ldots, f_t \in_R \mathcal{F}$. Prove that $\langle w, G(U) \rangle$ is $\sqrt{\zeta_h}$ -close to $\mathcal{N}(0,1)$ in the CDF distance, where $\zeta_h = O\left(\sum_{i=1}^t \left(\sum_{j \in h^{-1}(i)} |w_j|^2\right)^2\right)$.
- 9. A typical $h \in \mathcal{H}$ spreads its weights almost evenly among the buckets. Prove if w is η -balanced, then $\mathbb{E}_{h \in \mathcal{H}}[\zeta_h] = O(\eta^2)$.
- 10. Prove that $G \in O(\eta)$ fools halfspaces on n variables with η -balanced w-s.

A third try at fooling balanced halfspaces

11. Derandomize the selection of f_1, \ldots, f_t to achieve a shorter seed-length, using ideas similar to what we did above. Conclude that there exists an explicit PRG that $O(\eta)$ -fools halfspace on n variables having η -balanced w-s with seed-length $O(\log n + \log^2 \frac{1}{n})$.

We remark that in the paper they also remove the balance requirement, and achieve error ε with seed length $O(\log n + \log^2(\frac{1}{\varepsilon}))$, and even that was improved in a later paper to $\tilde{O}(\log \frac{n}{\varepsilon})$.

Question 4

Fix parameters T, W, ε . Our goal is to construct an ε -PRG against $[W = 2^s, T]$ BPs. The construction gives better results than Nisan's PRG when $T \leq 2^{s^{1-\alpha}}$ and generalizes the Nisan-Zuckerman PRG. From now on we assume $T \leq 2^{s^{1-\alpha}}$.

1. Show that you can fix

$$\Sigma = \operatorname{poly}\left(\frac{T \cdot \log W}{\varepsilon}\right),$$

$$\Gamma = \operatorname{poly}\left(\frac{TW}{\varepsilon}\right),$$

such that:

- $\Gamma = \Sigma^{2\ell}$ for some integer ℓ ,
- There exists a $(\frac{3\ell}{2}\log\Sigma, \frac{\varepsilon}{T})$ extractor $E \colon \Gamma \times \Sigma \to \Sigma^{\ell}$.
- 2. Let n be an arbitrary integer. Prove that $G_1 \colon \Gamma \times \Sigma^n \to \Sigma^{\ell \cdot n}$ defined by

$$G_1(x; y_1, \ldots, y_n) = E(x, y_1) \circ \ldots \circ E(x, y_n),$$

is a PRG against $[W, \ell n]_{\Sigma}$ BPs.

3. Set $n_i = \ell^{i+1}$. define $G_2 : \Gamma^2 \times \Sigma^{n_0} \to \Sigma^{n_2}$ by

$$G_2(x_1, x_2; \overline{y} = (y_1, \dots, y_{n_0})) = G_1(x_1; G_1(x_2, \overline{y})),$$

where we view $G_1(x_2, \overline{y})$ as an element of Σ^{n_1} . Prove that G_2 is a PRG against $[W, n_2]_{\Sigma}$ BPs.

- 4. Define G_r and prove that G_r is a PRG against $[W, n_r]_{\Sigma}$ BPs.
- 5. Conclude that when $T \leq 2^{s^{1-\alpha}}$ for a constant $\alpha > 0$, there exists an explicit construction of a PRG against $[W = 2^s, T = 2^{s^{1-\alpha}}]_{\Sigma}$ BPs with error $\varepsilon = \frac{1}{T}$ and seed length $O(\log T \cdot \frac{s}{\log s})$.