
0368-4283: Space-bounded computation 12/06/18

Take-Home Exam

Amnon Ta-Shma and Dean Doron

General instructions:

1. The deadline for the exam is 12/07/18.

2. Submit your (typed) solution by mail to amnon@tau.ac.il and deandoron@mail.tau.ac.il.

3. Work must be done alone.

4. If you had to use an electronic source, state it explicitly within the relevant question.
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Question 1

ZPL is the probabilistic, logspace class with zero-sided error (for every input, with probability at
least half the answer is the correct one, and otherwise it is quit). Let ZPL be the variant of ZPL
where the machine has multiple access to the random tape.

Prove that BPL ⊆ ZPL.

Question 2

We want to find an explicit, polynomial-length UTS for consistently labeled undirected d-regular
graphs over n vertices with λ̄ < 3

4 . Call this family of graphs Gn.

Definition 1. σ ∈ [d]∗ is a UTS for Gn, if for every G = (V,E) ∈ Gn, v ∈ V , walking on G from
v according to σ reaches all the vertices in the graph. σ is explicit, if there exists an algorithm
running in poly(n) time outputting it.

Definition 2. We say S ⊆ [d] is good for (G, v0) (G ∈ Gn) if there exists σ ∈ S such that for
every vertex v, a walk over G according to σ starting from v will visit v0. We say S is explicit if
|S| is polynomial, and there exists a poly(n) algorithm that given i ∈ [|S|] outputs the i-th string in
S.

1. Show that given an explicit S that is good for (G, v0) for every G ∈ G and v0, one can
construct an explicit UTS for G.

2. Construct a sequence of sets Si ⊆ [d] such that

S0 = {ε} , Si+1 = {utu : u ∈ Si, t ∈ [d]} .

Fix G = (V,E) ∈ G and v0. Define

R−1
G,v0

(σ) = {v ∈ V | The walk on G from v according to σ vists v0} .

Define
ri = max

σ∈Si

|R−1
G,v0

(σ)|.

Prove that r0 = 1 and ri+1 > ri + δ, where δ = ri(n−ri)
4n .

Guidance:

• Choose σ ∈ Si that attains ri. Show that walks according to σ from V \R−1
G,v0

(σ) end in
exactly n− ri vertices. Denote these vertices by B. Show that there exist enough edges
between R−1

G,v0
(σ) and B.

3. Show that rk = n for k = O(log n).

4. Conclude an explicit UTS. What is its cardinality as a function of n and d?
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Question 3

In this question we will construct PRGs fooling “almost-balanced” halfspaces. Given w ∈ Rn and
θ ∈ R, the halfspace Hw,θ : {1,−1}n → {1,−1} is the function Hw,θ(x) = sign(〈w, x〉 − θ).

Definition 3. We say G : {0, 1}ℓ → {1,−1}n ε-fools Hw,θ if
E[Hw,θ(U{1,−1}n)]− E[Hw,θ(G(Uℓ))]

 ≤ ε.

We measure distance between real-valued distributions P,Q by the CDF distance,

d(P,Q) = CDF(P )− CDF(Q)∞ = max
t∈R

 Prx∼P
[x < t]− Pr

x∼Q
[x < t]

 .

1. Fix w ∈ Rn and θ ∈ R. Prove that if G : {0, 1}ℓ → {1,−1}n is such that

d(〈w,G(Uℓ)〉, 〈w,U{1,−1}n〉) ≤ ε

then G 2ε-fools Hw,θ.

We will assume w = 1, as this can be done without loss of generality. We say a unit-norm w ∈ Rn

is η-balanced if w∞ ≤ η. We say a halfspace Hw,θ is η-balanced if w is.

Fooling monotone BPs and a first try at fooling halfspaces

Throughout, all of our BPs are read-once.

Definition 4. Given a [W,T ]Σ BP M and a vertex v at layer i, we let AccM (v) be the set of all
z ∈ ΣT−i such that starting from v, M accepts z. We say M is monotone if for every layer i there
exists an ordering vi1 , . . . , viW of the vertices in layer i such that if j < k then AM (vj) ⊆ AM (vk).

2. Prove that for any w ∈ Rn and θ ∈ R there exists a monotone [W,n]Σ={−1,1} BP M that
solves Hw,θ for some W .

Definition 5. Given a [W,T ]Σ BP M , we say that the BPs Mdown and Mup ε-sandwich M if:

• For every z ∈ ΣT , Mdown(z) ≤ M(z) ≤ Mup(z).

• Pr[Mup(U) = 1]− Pr[Mdown(U) = 1] ≤ ε.

3. Prove that for any monotone [W,T ]Σ BP M there exists Mdown and Mup that ε-sandwich M
with width 2T

ε (note that it is independent of the original width W ).

4. Prove that if G : {0, 1}ℓ → (Σ)T δ-fools monotone [2Tε , T ]Σ BPs then it also (ε + δ)-fools
monotone [W,T ]Σ BPs for arbitrary W .

5. Prove that if G : {0, 1}ℓ → (Σ)T δ-fools monotone [2Tε , T ]Σ BPs then

d(〈w,G(Uℓ)〉, 〈w,U{1,−1}n〉) ≤ O(ε+ δ).

and conclude that there exists an explicit PRG that ε-fools any halfspace on n variables with
seed-length O(log2 n

ε ).
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A second try at fooling balanced halfspaces

In this section you may use the following theorem, which is a corollary of the Berry-Esseen theorem.

Theorem 6. Let Y1, . . . , Yt be independent random variables with E[Yi] = 0, and denote


i E[Y 2
i ] =

σ2 and


i E[Y 4
i ] = ρ. Let Sn = 1

σ


i Yi. Then,

d(Sn,N (0, 1)) ≤
√
ρ

σ2
,

where N (0, 1) is the normal distribution with mean 0 and variance 1.

To define the construction, given n and η we set t = 1
η2

and require the following ingredients:

• A 2-UFOHFs H ⊆ {h : [n] → [t]}, such that ∀i∈[t], |h−1(i)| = | {x ∈ [n] | h(x) = i} | = n
t .

• A 4-UFOHFs F ⊆

f : [nt ] → {1,−1}


, i.e., if we let Yi be the random variable with value

f(i) where f is uniform over F , then for every distinct i1, i2, i3, i4 ∈ [nt ], (Yi1 , Yi2 , Yi3 , Yi4) =

U{1,−1}4 . For f ∈ F we let string(f) ∈ {−1, 1}n/t be the string that at location i has value

f(i).

For x ∈ Σn and S ⊆ [n], we let x|S denote the substring of x keeping only locations indexed by S

(so x|S ∈ Σ|S|). Define G : H× F t → {1,−1}n by

G(h; f1, . . . , ft) = x,

where x|h−1(i) = string(fi) for every i ∈ [t].

6. Show the construction can be efficiently implemented with seed length O( logn
η2

).

7. Prove that when w is η-balanced, 〈w,U{1,−1}n〉 is η-close to N (0, 1) in the CDF distance.

8. Fix h ∈ H and let the probability space be choosing f1, . . . , ft ∈R F . Prove that 〈w,G(U))〉

is
√
ζh-close to N (0, 1) in the CDF distance, where ζh = O

t
i=1


j∈h−1(i) |wj |2

2


.

9. A typical h ∈ H spreads its weights almost evenly among the buckets. Prove if w is η-balanced,
then Eh∈H[ζh] = O(η2).

10. Prove that G ε = O(η) fools halfspaces on n variables with η-balanced w-s.

A third try at fooling balanced halfspaces

11. Derandomize the selection of f1, . . . , ft to achieve a shorter seed-length, using ideas similar
to what we did above. Conclude that there exists an explicit PRG that O(η)-fools halfspace
on n variables having η-balanced w-s with seed-length O(log n+ log2 1

η ).

We remark that in the paper they also remove the balance requirement, and achieve error ε with
seed length O(log n+ log2(1ε )), and even that was improved in a later paper to Õ(log n

ε ).
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Question 4

Fix parameters T,W, ε. Our goal is to construct an ε-PRG against [W = 2s, T ] BPs. The construc-
tion gives better results than Nisan’s PRG when T ≤ 2s

1−α
and generalizes the Nisan-Zuckerman

PRG. From now on we assume T ≤ 2s
1−α

.

1. Show that you can fix

Σ = poly


T · logW

ε


,

Γ = poly


TW

ε


,

such that:

• Γ = Σ2ℓ for some integer ℓ,

• There exists a (3ℓ2 logΣ, ε
T ) extractor E : Γ× Σ → Σℓ.

2. Let n be an arbitrary integer. Prove that G1 : Γ× Σn → Σℓ·n defined by

G1(x; y1, . . . , yn) = E(x, y1) ◦ . . . ◦ E(x, yn),

is a PRG against [W, ℓn]Σ BPs.

3. Set ni = ℓi+1. define G2 : Γ
2 × Σn0 → Σn2 by

G2(x1, x2; y = (y1, . . . , yn0)) = G1(x1;G1(x2, y)),

where we view G1(x2, y) as an element of Σn1 . Prove that G2 is a PRG against [W,n2]Σ BPs.

4. Define Gr and prove that Gr is a PRG against [W,nr]Σ BPs.

5. Conclude that when T ≤ 2s
1−α

for a constant α > 0, there exists an explicit construction of
a PRG against [W = 2s, T = 2s

1−α
]Σ BPs with error ε = 1

T and seed length O(log T · s
log s).
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