0368-4283: Space-bounded computation 12/06/18

Take-Home Exam

Amnon Ta-Shma and Dean Doron

General instructions:

1. The deadline for the exam is 12/07/18.
2. Submit your (typed) solution by mail to amnon@tau.ac.il and deandoron@mail.tau.ac.il.
3. Work must be done alone.

4. If you had to use an electronic source, state it explicitly within the relevant question.



Question 1

ZPL is the probabilistic, logspace class with zero-sided error (for every input, with probability at
least half the answer is the correct one, and otherwise it is quit). Let ZPL* be the variant of ZPL
where the machine has multiple access to the random tape.

Prove that BPL C ZPL*.

Question 2
We want to find an explicit, polynomial-length UTS for consistently labeled undirected d-regular
graphs over n vertices with A < %. Call this family of graphs G,.

Definition 1. o € [d|* is a UTS for G, if for every G = (V,E) € G, v € V, walking on G from
v according to o reaches all the vertices in the graph. o is explicit, if there exists an algorithm
running in poly(n) time outputting it.

Definition 2. We say S C [d]* is good for (G,vo) (G € Gy) if there exists o € S such that for
every vertex v, a walk over G according to o starting from v will visit vg. We say S is explicit if
|S| is polynomial, and there exists a poly(n) algorithm that given i € [|S|] outputs the i-th string in
S.

1. Show that given an explicit S that is good for (G,vg) for every G € G and vp, one can
construct an explicit UTS for G.

2. Construct a sequence of sets S; C [d]* such that

So = {6}, Si+1 = {utu tu € S, te [d]}

Fix G = (V, E) € G and vg. Define
Ré}vo (0) ={v € V| The walk on G from v according to o vists vy} .

Define
_ -1
ri = max |Rg, (7).

ri(n—ri)
an

Prove that 1o =1 and 7,41 > 7; + 6, where § =

Guidance:

e Choose o € S; that attains r;. Show that walks according to o from V'\ Rélvo (o) end in
exactly n — r; vertices. Denote these vertices by B. Show that there exist enough edges
between R&lvo(a) and B.

3. Show that ry = n for k = O(logn).

4. Conclude an explicit UTS. What is its cardinality as a function of n and d?



Question 3
In this question we will construct PRGs fooling “almost-balanced” halfspaces. Given w € R™ and
6 € R, the halfspace Hyg: {1, —1}" — {1, —1} is the function Hy,¢(z) = sign({w, z) — 6).
Definition 3. We say G: {0,1}* — {1, -1}" e-fools Hy g if

|E[Hyo(Ug,—13n)] — E[Huwo(G(U))]] <e.

We measure distance between real-valued distributions P, Q) by the CDF distance,

A(P.Q) = |CDF(P) ~ CDF(Q)|l, = max | Pr v < 1] = Prlr <],

1. Fix w € R” and # € R. Prove that if G: {0,1}* — {1, —1}" is such that
d(<w7 G(U€)>7 <w7 U{l,—l}”)) <e
then G 2e-fools H,, 4.

We will assume ||w|| = 1, as this can be done without loss of generality. We say a unit-norm w € R"
is n-balanced if |w||o < 1. We say a halfspace H,, ¢ is n-balanced if w is.

Fooling monotone BPs and a first try at fooling halfspaces

Throughout, all of our BPs are read-once.

Definition 4. Given a [W,T]s, BP M and a vertex v at layer i, we let Accpr(v) be the set of all
2z € X1 such that starting from v, M accepts z. We say M is monotone if for every layer i there
exists an ordering vj,, ..., v, of the vertices in layer i such that if j < k then Apr(vj) C Apr(vg).

2. Prove that for any w € R" and ¢ € R there exists a monotone [W,n|s_;_; 13 BP M that
solves H,, g for some W.

Definition 5. Given a [W,T|s; BP M, we say that the BPs Mgy and My, e-sandwich M if:
o For every z € X1, Mypun(2) < M(2) < Myp(2).
o Pr[M,,(U) = 1] — Pr[Mgown(U) = 1] < e.

3. Prove that for any monotone [W,T|s; BP M there exists Moy, and M, that e-sandwich M
with width 2L (note that it is independent of the original width W).

4. Prove that if G: {0,1}* — ()T 6-fools monotone [2L,T]5; BPs then it also (¢ + 6)-fools
monotone [W, Ty, BPs for arbitrary W.

5. Prove that if G: {0,1}* — ()7 é-fools monotone [%,T]g BPs then
d(<w7 G(Uf»u <w7 U{l,—l}n>) < O(€ + 5)

and conclude that there exists an explicit PRG that e-fools any halfspace on n variables with
seed-length O(log? 2).



A second try at fooling balanced halfspaces

In this section you may use the following theorem, which is a corollary of the Berry-Esseen theorem.

Theorem 6. Let Y1, ...,Y; be independent random variables with E[Y;] = 0, and denote >, E[Y;?] =
0% and >, E[Y ] = p. Let S, = 13, Yi. Then,

p
d(Sp, N(0,1)) < g—;
where N(0,1) is the normal distribution with mean 0 and variance 1.

To define the construction, given n and n we set t = - and require the following ingredients:
n

e A 2-UFOHFs H C {h: [n] — [t]}, such that V;cpy, [h71(i)] = [{z € [n] | h(z) =i} | =2

e A 4-UFOHFs F C {f: [%] — {1,—-1}}, i.e., if we let Y; be the random variable with value
f(i) where f is uniform over F, then for every distinct i1,2,143,i4 € [}], (Y, Yi,, Yis, Yiy) =
U{17_1}4. For f € F we let string(f) € {—1, 1}"/t be the string that at location ¢ has value
f(@).

For x € ¥" and S C [n], we let z|g denote the substring of = keeping only locations indexed by S
(so |5 € »I51). Define G: H x Ft — {1,-1}" by

G(h;f17"'7ft) = T,

where z|,-1(;) = string(f;) for every i € [t].

6. Show the construction can be efficiently implemented with seed length O(h;?%").

7. Prove that when w is n-balanced, (w, Uy _13») is n-close to A'(0,1) in the CDF distance.

8. Fix h € H and let the probability space be choosing f1,..., fi €g F. Prove that (w,G(U)))
2
is v/Cp-close to N(0,1) in the CDF distance, where ¢, = O <Z§:1 (Zjeh—l(i) \ij) ) .

9. A typical h € H spreads its weights almost evenly among the buckets. Prove if w is n-balanced,
then Epez[Ch] = O(n?).

10. Prove that G € = O(n) fools halfspaces on n variables with n-balanced w-s.

A third try at fooling balanced halfspaces

11. Derandomize the selection of fi,..., f; to achieve a shorter seed-length, using ideas similar
to what we did above. Conclude that there exists an explicit PRG that O(n)-fools halfspace
on n variables having n-balanced w-s with seed-length O(logn + log? %)

We remark that in the paper they also remove the balance requirement, and achieve error ¢ with
seed length O(logn + logQ(%)), and even that was improved in a later paper to O(log %).



Question 4

Fix parameters T', W, e. Our goal is to construct an e-PRG against [W = 2% T| BPs. The construc-
tion gives better results than Nisan’s PRG when T' < 25" and generalizes the Nisan-Zuckerman

11—«

PRG. From now on we assume T < 2% .

1. Show that you can fix

T -1
5 poly<ﬂ>,
E

T
I' = poly <TW>

such that:

e I' = % for some integer ¢,

e There exists a (3flog ¥, £) extractor E: [' x ¥ — ¥,

2. Let n be an arbitrary integer. Prove that G1: I' x X" — X¢™ defined by

Gi(@;y1, -5 yn) = E(z,01) 0 - 0 E(2, yn),
is a PRG against [W, ¢n]y, BPs.

3. Set n; = ¢!, define Gy : I'? x ¥ — %2 by

G2($1ax2;y:(y1>"'7yn0)) = Gl(xl;Gl(any))a
where we view G1(z2,7) as an element of 3™ . Prove that G is a PRG against [IW, na]s; BPs.
4. Define G, and prove that G, is a PRG against [W, n,|yx BPs.

5. Conclude that when 7' < 25~ for a constant a > 0, there exists an explicit construction of

a PRG against [W = 25, T = 2¢' "]y, BPs with error ¢ = + and seed length O(log T - Toas)-




