
0368-4283: Space-bounded computation 12/06/18

Take-Home Exam

Amnon Ta-Shma and Dean Doron

General instructions:

1. The deadline for the exam is 12/07/18.

2. Submit your (typed) solution by mail to amnon@tau.ac.il and deandoron@mail.tau.ac.il.

3. Work must be done alone.

4. If you had to use an electronic source, state it explicitly within the relevant question.
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Question 1

ZPL is the probabilistic, logspace class with zero-sided error (for every input, with probability at
least half the answer is the correct one, and otherwise it is quit). Let ZPL󰂏 be the variant of ZPL
where the machine has multiple access to the random tape.

Prove that BPL ⊆ ZPL󰂏.

Question 2

We want to find an explicit, polynomial-length UTS for consistently labeled undirected d-regular
graphs over n vertices with λ̄ < 3

4 . Call this family of graphs Gn.

Definition 1. σ ∈ [d]∗ is a UTS for Gn, if for every G = (V,E) ∈ Gn, v ∈ V , walking on G from
v according to σ reaches all the vertices in the graph. σ is explicit, if there exists an algorithm
running in poly(n) time outputting it.

Definition 2. We say S ⊆ [d]󰂏 is good for (G, v0) (G ∈ Gn) if there exists σ ∈ S such that for
every vertex v, a walk over G according to σ starting from v will visit v0. We say S is explicit if
|S| is polynomial, and there exists a poly(n) algorithm that given i ∈ [|S|] outputs the i-th string in
S.

1. Show that given an explicit S that is good for (G, v0) for every G ∈ G and v0, one can
construct an explicit UTS for G.

2. Construct a sequence of sets Si ⊆ [d]󰂏 such that

S0 = {ε} , Si+1 = {utu : u ∈ Si, t ∈ [d]} .

Fix G = (V,E) ∈ G and v0. Define

R−1
G,v0

(σ) = {v ∈ V | The walk on G from v according to σ vists v0} .

Define
ri = max

σ∈Si

|R−1
G,v0

(σ)|.

Prove that r0 = 1 and ri+1 > ri + δ, where δ = ri(n−ri)
4n .

Guidance:

• Choose σ ∈ Si that attains ri. Show that walks according to σ from V \R−1
G,v0

(σ) end in
exactly n− ri vertices. Denote these vertices by B. Show that there exist enough edges
between R−1

G,v0
(σ) and B.

3. Show that rk = n for k = O(log n).

4. Conclude an explicit UTS. What is its cardinality as a function of n and d?
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Question 3

In this question we will construct PRGs fooling “almost-balanced” halfspaces. Given w ∈ Rn and
θ ∈ R, the halfspace Hw,θ : {1,−1}n → {1,−1} is the function Hw,θ(x) = sign(〈w, x〉 − θ).

Definition 3. We say G : {0, 1}ℓ → {1,−1}n ε-fools Hw,θ if
󰀏󰀏E[Hw,θ(U{1,−1}n)]− E[Hw,θ(G(Uℓ))]

󰀏󰀏 ≤ ε.

We measure distance between real-valued distributions P,Q by the CDF distance,

d(P,Q) = 󰀂CDF(P )− CDF(Q)󰀂∞ = max
t∈R

󰀏󰀏󰀏󰀏 Prx∼P
[x < t]− Pr

x∼Q
[x < t]

󰀏󰀏󰀏󰀏 .

1. Fix w ∈ Rn and θ ∈ R. Prove that if G : {0, 1}ℓ → {1,−1}n is such that

d(〈w,G(Uℓ)〉, 〈w,U{1,−1}n〉) ≤ ε

then G 2ε-fools Hw,θ.

We will assume 󰀂w󰀂 = 1, as this can be done without loss of generality. We say a unit-norm w ∈ Rn

is η-balanced if 󰀂w󰀂∞ ≤ η. We say a halfspace Hw,θ is η-balanced if w is.

Fooling monotone BPs and a first try at fooling halfspaces

Throughout, all of our BPs are read-once.

Definition 4. Given a [W,T ]Σ BP M and a vertex v at layer i, we let AccM (v) be the set of all
z ∈ ΣT−i such that starting from v, M accepts z. We say M is monotone if for every layer i there
exists an ordering vi1 , . . . , viW of the vertices in layer i such that if j < k then AM (vj) ⊆ AM (vk).

2. Prove that for any w ∈ Rn and θ ∈ R there exists a monotone [W,n]Σ={−1,1} BP M that
solves Hw,θ for some W .

Definition 5. Given a [W,T ]Σ BP M , we say that the BPs Mdown and Mup ε-sandwich M if:

• For every z ∈ ΣT , Mdown(z) ≤ M(z) ≤ Mup(z).

• Pr[Mup(U) = 1]− Pr[Mdown(U) = 1] ≤ ε.

3. Prove that for any monotone [W,T ]Σ BP M there exists Mdown and Mup that ε-sandwich M
with width 2T

ε (note that it is independent of the original width W ).

4. Prove that if G : {0, 1}ℓ → (Σ)T δ-fools monotone [2Tε , T ]Σ BPs then it also (ε + δ)-fools
monotone [W,T ]Σ BPs for arbitrary W .

5. Prove that if G : {0, 1}ℓ → (Σ)T δ-fools monotone [2Tε , T ]Σ BPs then

d(〈w,G(Uℓ)〉, 〈w,U{1,−1}n〉) ≤ O(ε+ δ).

and conclude that there exists an explicit PRG that ε-fools any halfspace on n variables with
seed-length O(log2 n

ε ).
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A second try at fooling balanced halfspaces

In this section you may use the following theorem, which is a corollary of the Berry-Esseen theorem.

Theorem 6. Let Y1, . . . , Yt be independent random variables with E[Yi] = 0, and denote
󰁓

i E[Y 2
i ] =

σ2 and
󰁓

i E[Y 4
i ] = ρ. Let Sn = 1

σ

󰁓
i Yi. Then,

d(Sn,N (0, 1)) ≤
√
ρ

σ2
,

where N (0, 1) is the normal distribution with mean 0 and variance 1.

To define the construction, given n and η we set t = 1
η2

and require the following ingredients:

• A 2-UFOHFs H ⊆ {h : [n] → [t]}, such that ∀i∈[t], |h−1(i)| = | {x ∈ [n] | h(x) = i} | = n
t .

• A 4-UFOHFs F ⊆
󰀋
f : [nt ] → {1,−1}

󰀌
, i.e., if we let Yi be the random variable with value

f(i) where f is uniform over F , then for every distinct i1, i2, i3, i4 ∈ [nt ], (Yi1 , Yi2 , Yi3 , Yi4) =

U{1,−1}4 . For f ∈ F we let string(f) ∈ {−1, 1}n/t be the string that at location i has value

f(i).

For x ∈ Σn and S ⊆ [n], we let x|S denote the substring of x keeping only locations indexed by S

(so x|S ∈ Σ|S|). Define G : H× F t → {1,−1}n by

G(h; f1, . . . , ft) = x,

where x|h−1(i) = string(fi) for every i ∈ [t].

6. Show the construction can be efficiently implemented with seed length O( logn
η2

).

7. Prove that when w is η-balanced, 〈w,U{1,−1}n〉 is η-close to N (0, 1) in the CDF distance.

8. Fix h ∈ H and let the probability space be choosing f1, . . . , ft ∈R F . Prove that 〈w,G(U))〉

is
√
ζh-close to N (0, 1) in the CDF distance, where ζh = O

󰀕󰁓t
i=1

󰀓󰁓
j∈h−1(i) |wj |2

󰀔2
󰀖

.

9. A typical h ∈ H spreads its weights almost evenly among the buckets. Prove if w is η-balanced,
then Eh∈H[ζh] = O(η2).

10. Prove that G ε = O(η) fools halfspaces on n variables with η-balanced w-s.

A third try at fooling balanced halfspaces

11. Derandomize the selection of f1, . . . , ft to achieve a shorter seed-length, using ideas similar
to what we did above. Conclude that there exists an explicit PRG that O(η)-fools halfspace
on n variables having η-balanced w-s with seed-length O(log n+ log2 1

η ).

We remark that in the paper they also remove the balance requirement, and achieve error ε with
seed length O(log n+ log2(1ε )), and even that was improved in a later paper to Õ(log n

ε ).
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Question 4

Fix parameters T,W, ε. Our goal is to construct an ε-PRG against [W = 2s, T ] BPs. The construc-
tion gives better results than Nisan’s PRG when T ≤ 2s

1−α
and generalizes the Nisan-Zuckerman

PRG. From now on we assume T ≤ 2s
1−α

.

1. Show that you can fix

Σ = poly

󰀕
T · logW

ε

󰀖
,

Γ = poly

󰀕
TW

ε

󰀖
,

such that:

• Γ = Σ2ℓ for some integer ℓ,

• There exists a (3ℓ2 logΣ, ε
T ) extractor E : Γ× Σ → Σℓ.

2. Let n be an arbitrary integer. Prove that G1 : Γ× Σn → Σℓ·n defined by

G1(x; y1, . . . , yn) = E(x, y1) ◦ . . . ◦ E(x, yn),

is a PRG against [W, ℓn]Σ BPs.

3. Set ni = ℓi+1. define G2 : Γ
2 × Σn0 → Σn2 by

G2(x1, x2; y = (y1, . . . , yn0)) = G1(x1;G1(x2, y)),

where we view G1(x2, y) as an element of Σn1 . Prove that G2 is a PRG against [W,n2]Σ BPs.

4. Define Gr and prove that Gr is a PRG against [W,nr]Σ BPs.

5. Conclude that when T ≤ 2s
1−α

for a constant α > 0, there exists an explicit construction of
a PRG against [W = 2s, T = 2s

1−α
]Σ BPs with error ε = 1

T and seed length O(log T · s
log s).
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