$0368\mbox{-}4283\mbox{-}Space\mbox{-}Bounded\mbox{ Computation}$

Tuesdays, 16:00-19:00 in Holtzblat 07.

Grading policy:

- Take-Home Exam 50%. Students who want to do a reading project instead of the take-home exam should contact us.
- Homework 50%.
- Bonuses for help in forum and active participation in class.

Extended Syllabus

Part I – The basics				
Basic Classes. Some representative problems.	The classes $DSpace(s(n))$, $BPSpace(s(n))$, $RSpace(s(n))$ and $NSpace(s(n))$.	[AB]		
	Circuit classes: NC^k , AC^k and NC .	[AB]		
	Some languages (and problems) we want to classify: addition, multiplication, parity, majority, sorting, undircted connectivity, directed connectivity (STCON), Det, Perm, Maximal Independent Set (MIS), Perfect Matching (PM), Polynomial identity testing (PIT).			
Part II – Random Walks over Undirected graphs				
	Undirected graphs as operators.			
From Combinatorics to Algebra	Spectral gap and rapid mixing.			
	Undirected connectivity is in RL.	[AK+], [AS]		
	Universal traversal sequences and universal exploration sequences.			
A random walk over an expander as a replacement to independent random samples	Expanders: Graphs with a large spectral gap.			
	The expander mixing lemma.	[V]		
	The expander Chernoff bound.	[H]		
	Bias samplers.			
	A comparison with other samplers (extractors, condensers, and more).			

Part III – The Zig-Zag product and its ramifications for Space Bounded computation				
	Cayley graphs, Abelian Cayley graphs, Explicit exapnders with logarithmic degree.			
Growing a graph into an expander	The art of turning big problems to small: The Zig-Zag product.	[RVW]		
	A "combinatorial" construction of fully explicit expanders.	[RVW]		
	Undirected Connectivity is in Deterministic LogSpace.	[R]		
	Explicit universal exploration sequences	[RVW]		
Inverting the Laplacian in small space	The Laplacian of undirected graphs	[L]		
	Approximating non-negative operators	[MR+]		
	Sparsifiers. Sparsifying the clique: Derandomized Squaring	[MR+]		
	Approximating the inverse of the Laplacian of an undirected graph	[MR+]		
Part IV – Directed graphs.				
	Normal operators, Hermitian operators, diagonalizable operators.			
	The SVD decomposition vs. the Jordan normal form.			
	Viewing bipartite graphs as operators. The up and down Laplacian. Doing spectral analysis with directed graphs.			
	An eigenvalue-approximation problem hard for NL.			
	The class BQL.			

Part V – Pseudo-random Generators				
	Branching programs: The non-uniform analogue of BPL.			
	Pseudo-Randomness.			
Nisan's generator	Nisan's generator (with hash functions and pair-wise independence; with expanders and the expander mixing lemma; with extractors).	[N1,NZ]		
	The INW generator. Curving the seed from the inside, or taking it for each level from the outside.	[INW]		
	$BPL \subseteq DTimeSpace(\operatorname{poly}(n), \log^2 n)$	[N2]		
RL is in DSpace($\log^{1.5} n$)Pseudo-deterministic algorithms. Consistent using shift and truncate.		[SZ]		
	The Saks and Zhou derandomization algorithm.	[SZ]		
PRGs against more restricted adversaries	A PRG against combinatorial rectangles.			
	A PRG against regular branching programs.			
	A PRG against half spaces.			

References

[V]	Salil Vadhan	Pseudorandomness (link)
[LW]	Michael Luby and Avi Wigderson	PairwiseIndependenceandDerandomization (link)
[L]	László Lovász	Random Walks on Graphs: A Survey (link)
[AB]	Sanjeev Arora and Boaz Barak	Computational Complexity: A Modern Approach
[AK+]	R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász and C. Rackof	Random walks, universal traversal sequences, and the complexity of maze problems
[AS]	Noga Alon and Benny Sudakov	Bipartite subgraphs and the smallest eigenvalue (link)
[H]	Alexander Healy	Randomness-Efficient Sampling within NC^1 (link)
[RVW]	Omer Reingold, Salil Vadhan and Avi Wigderson	Entropy waves, the zig-zag graph product, and new constant-degree (link)
[R]	Omer Reingold	Undirected Connectivity in Log-Space (link)
[MR+]	J. Murtagh, O. Reingold, A. Sidford and S. Vadhan	Derandomization Beyond Connectivity: Undirected Laplacian Systems in Nearly Logarithmic Space (link)
[N1]	Noam Nisan	Pseudorandom generators for space-bounded computation (link)
[N2]	Noam Nisan	$RL\subseteqSC\;(\mathrm{link})$
[INW]	Russel Impagliazzo, Noam Nisan and Avi Wigderson	Pseudorandomness for Network Algorithms (link)
[NZ]	Noam Nisan and David Zuckerman	Randomness is linear in space (link)
[SZ]	Michael Saks and Shiyu Zhou	$BP_{H}SPACE(S) \subseteq DSPACE(S^{3/2}) \text{ (link)}$