
Error Reduction For Weighted PRGs Against1

Read Once Branching Programs2

Gil Cohen @3

School of Computer Science, Tel Aviv University, Israel4

Dean Doron @5

Department of Computer Science, Stanford University, USA6

Oren Renard @7

School of Computer Science, Tel Aviv University, Israel8

Ori Sberlo @9

School of Computer Science, Tel Aviv University, Israel10

Amnon Ta-Shma @11

School of Computer Science, Tel Aviv University, Israel12

Abstract13

Weighted pseudorandom generators (WPRGs), introduced by Braverman, Cohen and Garg [5], are a14

generalization of pseudorandom generators (PRGs) in which arbitrary real weights are considered,15

rather than a probability mass. Braverman et al. constructed WPRGs against read once branching16

programs (ROBPs) with near-optimal dependence on the error parameter. Chattopadhyay and17

Liao [6] somewhat simplified the technically involved BCG construction, also obtaining some18

improvement in parameters.19

In this work we devise an error reduction procedure for PRGs against ROBPs. More precisely,20

our procedure transforms any PRG against length n width w ROBP with error 1/poly(n) having21

seed length s to a WPRG with seed length s + O(log w
ε

· log log 1
ε
). By instantiating our procedure22

with Nisan’s PRG [17] we obtain a WPRG with seed length O(log n · log(nw) + log w
ε

· log log 1
ε
).23

This improves upon [5] and is incomparable with [6].24

Our construction is significantly simpler on the technical side and is conceptually cleaner.25

Another advantage of our construction is its low space complexity O(log nw) + poly(log log 1
ε
) which26

is logarithmic in n for interesting values of the error parameter ε. Previous constructions (like [5, 6])27

specify the seed length but not the space complexity, though it is plausible they can also achieve28

such (or close) space complexity.29

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-30

tion31

Keywords and phrases Pseudorandom generators, Read once branching programs, Space-bounded32

computation33

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.2234

Funding Gil Cohen: Supported by ERC starting grant 949499 and by Israel Science Foundation35

grant 1569/18.36

Dean Doron: Supported by NSF award CCF-1763311.37

Oren Renard: Supported by the Azrieli Faculty Fellowship.38

Ori Sberlo: Supported by ERC starting grant 949499 and by ISF grant 952/18.39

Amnon Ta-Shma: Supported by Israel Science Foundation grant 952/18.40

© Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma;
licensed under Creative Commons License CC-BY 4.0

36th Computational Complexity Conference (CCC 2021).
Editor: Valentine Kabanets; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gil@tauex.tau.ac.il
mailto:ddoron@stanford.edu
mailto:orenrenard@mail.tau.ac.il
mailto:orisberlo@mail.tau.ac.il
mailto:amnon@tauex.tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2021.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Error Reduction For Weighted PRGs Against Read Once Branching Programs

1 Introduction41

1.1 A brief account of space-bounded derandomization42

Understanding the role that randomness plays in computation is of central importance in43

complexity theory. While randomness is provably necessary in many computational settings44

such as cryptography, PCPs and distributed computing, it is widely believed that randomness45

adds no significant computational power to neither time- nor space-bounded algorithms.46

Remarkably, proving such a statement for time-bounded algorithms implies circuit lower47

bounds which seem to be out of reach of current proof techniques [19, 14, 16].48

On the other hand, there is no known barrier for proving such a statement in the space-49

bounded setting. Indeed, while we cannot even rule out a scenario in which randomness “buys”50

exponential time, the space-bounded setting is much better understood. Savitch’s theorem [23]51

already implies that any one-sided error randomized algorithm can be simulated determinis-52

tically with only a quadratic overhead in space, namely RL ⊆ L2. The (possibly) stronger53

inclusion BPL ⊆ L2 can be proven easily through a variant of Savitch’s theorem and also54

follows from [4]. Using pseudorandom generators, Nisan [17, 18] devised a time-efficient deran-55

domization with quadratic overhead in space, concretely, BPL ⊆ DTISP(poly(n), log2 n).56

Focusing solely on space, the state of the art result was obtained by Saks and Zhou [22]57

that build on Nisan’s work to deterministically simulate two-sided error space s randomized58

algorithms in space O(s3/2), thus, establishing that BPL ⊆ L3/2.59

1.2 Pseudorandom generators for ROBPs60

Space-bounded algorithms are typically studied by considering their non-uniform counterparts.61

A length n, width w read-once branching program (ROBP) is a directed graph whose nodes,62

called states, are partitioned to n + 1 layers, each consists of at most w states. The first63

layer contains a designated “start” state, and the last layer consists of two states labeled64

’accept’ and ’reject’. From every state but for the latter two, there are two outgoing edges,65

labeled by 0 and 1, to the following layer.1 On input x ∈ {0, 1}n, the computation proceeds66

by following the edges according to the labels given by the bits of x starting from the start67

state. The string x is accepted by the program if the computation ends in the accept state.68

A well-known fact (see, e.g., [10, Chapter 5], and [3, Chapter 14.4.4]) is that any space69

s randomized algorithm in the Turing model can be simulated by a length n, width w70

ROBP with n, w = 2O(s). Thus, one approach to derandomize two-sided error space-bounded71

algorithms is to construct, in bounded space, a distribution of small support that “looks72

random” to any such ROBP. We say that a distribution D on n-bit strings is (n, w, ε)73

pseudorandom if for every length n, width w ROBP, the path induced by an instruction74

sequence that is sampled from D has, up to an additive error ε, the same probability to75

end in the accept state as a truly random path. A truly random path corresponds to a76

path picked uniformly at random from the 2n possible paths. An (n, w, ε) pseudorandom77

generator (PRG) is an algorithm PRG : {0, 1}s → {0, 1}n that when fed with s uniformly78

random bits has an output distribution that is (n, w, ε) pseudorandom. We refer to the input79

to PRG as the seed.80

1 For simplicity, here we only consider ROBPs with two outgoing edges. Larger out-degrees (or alphabet)
can also be considered and is in fact crucial for obtaining our result even if one is only interested in the
binary case.

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:3

Derandomizing using a PRG is straightforward. By iterating over all seeds and generating81

the corresponding instruction sequences, one can calculate the fraction of those paths that82

end in the accept state. This way, one obtains an ε-approximation to the probability of83

reaching the accept state while taking a truly random path in the program. The space84

overhead consists of the seed length s (as an iterator is maintained) and the space of the85

PRG.86

One can prove the existence of an (n, w, ε) PRG with seed length O(log(nw/ε)). The87

proof is via the probabilistic method and has no guarantee on the space complexity of the88

PRG. As such, it is not useful for the purpose of derandomization. In his seminal work,89

Nisan [17] devised a PRG with seed length s = O(log n · log(nw/ε)) and space complexity90

O(log(nw/ε)). Setting n, w = 2Θ(s) and ε to a small constant, the seed length is O(s2) indeed91

yields derandomization with quadratic overhead in space. Saks and Zhou [22] applied Nisan’s92

generator in a far more sophisticated way than the naïve derandomization, in particular93

exploiting its low space complexity, so to obtain their result.94

1.3 Pseudorandom pseudo-distributions for ROBPs95

Braverman et al. [5] introduced the notion of a pseudorandom pseudo-distribution (PRPD)96

generalizing pseudorandom distributions.97

▶ Definition 1 (pseudorandom pseudo-distribution). Let ρ1, . . . , ρ2s ∈ R and p1, . . . , p2s ∈98

{0, 1}n. The sequence D̃ = ((ρ1, p1), . . . , (ρ2s , p2s)) is an (n, w, ε) pseudorandom pseudo-99

distribution (PRPD) if for every length n, width w ROBP, the sum of all ρi-s for which the100

respective paths pi end in the accept state is an ε-approximation to the probability of ending101

at the accept state by taking a truly random path in the program.102

Note that Definition 1 allows the weights ρi to take both positive and negative values.103

These values are not necessarily bounded by 1 in absolute value, nor by any constant for104

that matter, and they do not necessarily sum up to 1. Nevertheless, the definition requires105

that the numbers cancel out nicely so that summing the weights of the respective paths106

that arrive to the accept state yields an ε-approximation for the probability of arriving to107

the accept state by taking a truly random path (and, in particular, the sum is a number in108

[−ε, 1 + ε]). Analogous to a PRG, an (n, w, ε) weighted pseudorandom generator (WRPG) is109

an algorithm WPRG : {0, 1}s → R × {0, 1}n whose output, when fed with a uniform seed, is110

an (n, w, ε) PRPD.111

A WPRG that can be computed in bounded space suffices to derandomize two-sided error112

randomized algorithms. Indeed, the straightforward derandomization using a pseudorandom113

(proper) distribution, which sums the probability mass of the relevant paths, works just as114

well for pseudo-distributions as one can sum up the weights ρi which, in a sense, generalize115

the probability mass. Of course, the space requirement now depends on the bit complexity116

of the weights as well.117

1.4 The error parameter118

Braverman et al. [5] constructed a WPRG that has seed length with an improved–in119

fact near-optimal–dependence on the error parameter ε. Their WPRG has seed length120

O(log2 n · log logn
1
ε +log n · log w +log w

ε · log log w
ε). For the purpose of derandomization, the121

error parameter is anyhow taken to be constant, and so the necessity of such an improvement122

may seem moot. However, by inspecting Nisan’s recursive construction one can see that123

the log2 n term in the seed length appears due to the way the error evolves throughout the124

CCC 2021

22:4 Error Reduction For Weighted PRGs Against Read Once Branching Programs

recursion. Hence, a construction which allows for a more delicate error analysis is called for.125

Furthermore, the Saks-Zhou construction applies Nisan’s PRG in a setting in which ε ≪ 1/n126

for obtaining their result. It was observed [5] that improving upon [22] can be obtained by127

constructing a PRG having seed length with better dependence on both w, ε, even when128

retaining the log2 n dependence.129

Interestingly (and unfortunately), the log2 n term in the BCG construction appears for130

a completely different reason. In short, unlike prior works [17, 15] that maintain a list of131

instructions throughout the recursion, BCG maintains a more involved structure consisting132

of several lists of lists. Maintaining the invariant on this complex structure is the reason for133

the log2 n term in the seed of BCG’s construction.134

As hinted above, the BCG construction is quite involved. In a subsequent work Chat-135

topadhyay and Liao [6] somewhat simplified the BCG construction also obtaining slight136

improvement in parameters. In particular, the seed length obtained by [6] is O(log n ·137

log nw · log log nw + log 1
ε). Additionally, Hoza and Zuckerman [13] obtained a significantly138

simpler construction of hitting sets against ROBPs. Their construction has seed length139

O(1
max(1,log log w−log log n) · log n · log nw+log 1

ε). Although hitting sets are weaker objects than140

PRPDs that are aimed for the derandomization of one sided error randomized algorithms,141

a subsequent work by Cheng and Hoza [7] showed how to derandomize two sided error142

randomized algorithms using hitting sets. While this is an illuminating result, we stress143

that most known constructions of PRGs, WPRGs and hitting sets make use of compositions144

(either directly or indirectly) and HSGs do not compose well, and so it is very much desired145

to devise new techniques for constructing PRGs and WPRGs.146

1.5 Our contribution147

This work further focuses on the error parameter of PRPDs. As our main result, we obtain148

an error reduction procedure. That is, we devise an algorithm that transforms, in a black-box149

manner, a PRG with a modest error parameter ε0 to a WPRG with a desired error parameter150

ε, having comparable seed length and with a near optimal dependence on ε.151

▶ Theorem 2 (main result, see also Corollary 15). Suppose PRG is an
(
n, w, n−2) PRG with152

seed length s0, computable in space m. Then, for every ε there exists an (n, w, ε) WPRG153

with seed length154

s = s0 + O

(
log w

ε
· log logn

1
ε

)
.155

that is computable in space O(m + (log log w
ε)3).156

When instantiated with Nisan’s PRG [17] our error reduction procedure yields WPRGs with157

a seed that is slightly shorter than [5] and is incomparable to [6].158

▶ Corollary 3 (see also Corollary 16). There exists an (n, w, ε) WPRG with seed length159

O

(
log n · log nw + log w

ε
· log logn

1
ε

)
160

computable in space O
(

log nw +
(
log log w

ε

)3
)

.161

Our error reduction procedure as well as the resulting WPRG are significantly simpler162

than [5, 6]. Moreover, the underlying ideas are different and conceptually cleaner. More163

generally, it is much preferred to have a black-box error reduction procedure rather than a164

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:5

specific explicit construction. On top of the insights obtained, such a modularization has165

the potential of being instantiated in different settings such as for regular and permutation166

ROBPs or for bounded-width ROBPs.167

Our error reduction procedure borrows ideas from the line of work concerning determin-168

istic space-efficient graph algorithms, in particular a recent work by Ahmadinejad, Kelner,169

Murtagh, Peebles, Sidford and Vadhan [1] (which, in turn, is based on an exciting line of work170

on nearly-linear time graph algorithms, deterministic or otherwise. See [9, 8] and references171

therein).172

Independently, Pyne and Vadhan [20] also used the Richardson iteration to obtain a173

WPRG for polynomial-width branching programs, and furthermore used that to obtain new174

results for permutation BPs.175

1.6 An overview of our construction176

Let PRG : {0, 1}s → {0, 1}n be an (n, w, ε0) PRG whose error we wish to reduce. Let177

A = (A1, . . . , An) be the w × w stochastic matrices that correspond to a length n width178

w ROBP. That is, Ai = 1
2 (A(0)

i + A
(1)
i) where A

(0)
i is the Boolean stochastic matrix that179

encodes the edges leaving layer i that are labeled with 0 and A
(1)
i encodes the edges labeled180

with 1. Define the (n + 1)w × (n + 1)w lower triangular block matrix B as follows. For181

a, b ∈ [n + 1], a > b, and σ ∈ {0, 1}s, let182

B[a, b] = E
σ∈{0,1}s

[
A(PRG(σ)a−b)

a · · · A
(PRG(σ)1)
b

]
.183

Further, B[a, a] = Iw. Since PRG has error ε0, for every block B[a, b] with a > b, ∥B[a, b] −184

Aa · · · Ab∥ ≤ ε0. Following [1] we observe that by denoting185

L =



I 0 . . . 0 0
−A1 I . . . 0 0

0 −A2
. . . 0 0

...
...

. . .
...

...
0 0 . . . −An I

 ,186

one has that187

L−1 =



I 0 . . . 0 0
A1 I . . . 0 0

A2A1 A2
. . . 0 0

...
...

. . .
...

...
An . . . A1 An . . . A2 . . . An I

 .188

Thus, ∥B − L−1∥ ≤ (n + 1)ε0. That is, the crude error PRG can be used to approximate L−1
189

by applying it to all subprograms of the original ROBP.190

Richardson iteration is a method for improving a given approximation to an inverse of a191

matrix. This method is frequently used to construct a preconditioner to a Laplacian system.192

To describe this method, let L = I − A. For k ≥ 1 define the matrix193

Rk =
k∑

i=0
(I − BL)iB. (1)194

CCC 2021

22:6 Error Reduction For Weighted PRGs Against Read Once Branching Programs

It can be shown that
∥∥Rk − L−1

∥∥ ≤ (n + 1) (2(n + 1)ε0)k+1. Thus, by taking ε0 = n−2 and195

k = O(logn
1
ε), one obtains approximation ∥Rk − L−1∥ ≤ ε. In particular, the lower left196

block of Rk is an ε-approximation of the desired product An · · · A1.197

We further develop Equation (1). Let ∆ = I − BL. One can show that198

∆[a, b] =
{

B[a, b + 1] · Ab − B[a, b] a > b,

0 a ≤ b.
(2)199

Substituting this back to Rk, for a > b we have that200

Rk[a, b] = B[a, b] +
k∑

i=1

∑
a>ℓi>···>ℓ1≥b

∆[a, ℓi] · ∆[ℓi, ℓi−1] · · · ∆[ℓ2, ℓ1] · B[ℓ1, b].201

If we further let C0[a, b] = B[a, b + 1] · Ab and C1[a, b] = B[a, b] then202

203

Rk[a, b] = B[a, b]+204

k∑
i=1

∑
a>ℓ1>···>ℓi≥b

∑
t1,...,ti∈{0,1}

(−1)t1+···+ti · Cti
[a, ℓi] · · · Ct1 [ℓ2, ℓ1] · B[ℓ1, b]. (3)205

206

By extending the definition of ROBPs to arbitrary alphabets (rather than binary) we207

observe that each summand in Equation (3) can be realized by a ROBP. Our construction208

thus uses an auxiliary PRG that ε′ fools each summand and hence ε′nO(k) ≈ ε′ · poly(1
ε)209

approximates Rk which, in turn, ε approximates L−1 yielding overall an O(ε) approximation.210

As the ROBP that correspond to each summand is short (recall i ≤ k = O(logn
1
ε) ≪ n), a211

short seed is sufficient even for the high accuracy ε′ = poly(ε) that we require. We invoke [15]212

as our auxiliary PRG as it has good dependence on the alphabet size which, in our case, is213

comparable to the seed of the crude PRG that we started with. We remark that the weights214

in our PRPD are used so to mimic Equation (3). Indeed, on top of the sign, there are
(

n
i

)
215

summands that correspond to partition to i + 1 segments and so the weights are used for216

creating the appropriate scaling between different values of i.217

Discussion.218

While C1[a, b] = B[a, b] is obtained by PRG, C0[a, b] is computed by following the instructions219

of PRG for all but the first step. For the latter, we use a fresh random bit. Namely, consider a220

thought experiment in which we use a new–more expensive–PRG PRG′ : {0, 1}s+1 → {0, 1}ℓ
221

that is defined by PRG′(σ, p) = p ◦ PRG(σ)[1,ℓ−1], where σ : {0, 1}s and p ∈ {0, 1}. The222

matrix ∆[a, b] = C1[a, b] − C0[a, b] then compares the better approximation C1[a, b] with223

the “actual” approximation C0[a, b]. From this perspective, Equation (3) suggests interpret-224

ing the Richardson iteration as a linear combination with ±1 coefficients (as determined225

by (−1)t1+···+ti) of approximations of An · · · A1 where each approximation is partition to226

segments (encoded by ℓ1 > · · · > ℓi). In segment j, according to the value tj , the relevant227

sequence of instructions is obtained either from the original PRG or via the refined one PRG′.228

1.7 A comparison with [5]229

It is worthwhile to explore the differences between the BCG construction [5] (and the followup230

work of Chattopadhyay and Liao [6] which uses similar ideas) and ours and to point out the231

aspects of our work that we find similar to the work of Cheng and Hoza [7], and of Hoza and232

Zuckerman [13]. We start by giving a brief overview of the BCG construction.233

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:7

1.7.1 A brief overview of BCG234

In constructions prior to [5] (e.g., [17, 15]), a list of instructions is maintained with the235

property that given a ROBP A1, . . . , An, averaging over the products corresponding to236

the instructions yields the desired approximation to the product An · · · A1. The key idea237

suggested in [5] is to maintain not a single list whose average yields the desired approximation238

but rather several lists of instructions L0, L1, . . . , Lk such that averaging according to the239

instructions in L0 yields a modest approximation; averaging according to L0 ∪ L1 yields a240

more refined approximation, and so forth. Averaging according to the instructions given241

by L0 ∪ · · · ∪ Lk gives the desired approximation. Thus, L0 can be thought of as a crude242

approximation, L1 a first order correction term, L2 a second order correction term, etc.243

To implement this idea, weights were introduced and, moreover, each list but for L0 was244

in itself a list of lists, or bundles. The different instructions in a bundle did not carry useful245

information by themselves and it is the bundle which has the desired properties. Lists that246

correspond to higher error terms requires the expensive use of bigger bundles and larger247

weights, and so a delicate use of balanced and unbalanced samplers is employed in [5] in order248

to maintain the desired invariant throughout the recursion and assuring that the bundles249

and weights do not get too large.250

1.7.2 Comparison with BCG251

Our work, in comparison, goes back to the use of a single list as in [17, 15]. We do not need252

to maintain several lists, let alone lists of bundles. This makes our construction significantly253

simpler and, in particular, spares us from the delicate application of different types of254

samplers. The only component we do need are weights, both positive and negative that255

are unbounded in absolute value. However, it is straightforward to pinpoint the weights256

used by our construction (see Equation (11)) whereas in [5] the weights are computed via257

a recursive algorithm. As a result, it is difficult to argue about them. We believe that the258

simpler and more explicit structure of our construction would enable future works to combine259

our construction with other ideas for the purpose of obtaining improved constructions and260

derandomization results.261

The common theme to both our construction and BCG is working with cancellations.262

We “read off” the Richardson iteration what cancellations to consider. As we discussed in263

the end of Section 1.6, we interpret Richardson iteration as comparing a PRG with the264

PRG obtained by replacing the first bit by a fresh truly random bit. The BCG construction,265

on the other hand, “plants” cancellations by considering two samplers–one more refined266

than the other–and encode their difference in their lists (this requires the introduction of267

bundles). So, in a sense, BCG’s cancellations are obtained by comparing one approximation268

to another where both approximations are obtained via samplers whereas we make use of one269

approximation coming from a PRG and another that is obtained by replacing the first bit by270

a fresh truly uniform bit. The way we combine these is dictated by Richardson iteration.271

1.7.3 Common aspects with [13, 7]272

For their derandomization result, Cheng and Hoza [7] introduce the notion of local consistency.273

Informally, the authors consider the difference between applying a generated sequence of274

instructions (via a hitting set) to that obtained by the generated sequence when replacing275

the last bit with a fresh truly random bit. This is somewhat reminisce to the way we read the276

cancellations of the Richardson iteration. However, while local consistency is used for making277

CCC 2021

22:8 Error Reduction For Weighted PRGs Against Read Once Branching Programs

decisions once a ROBP is given, we combine the analog sequences using the Richardson278

iterator in a block-box matter.279

The construction of Hoza and Zuckerman [13] also shares similar aspects with ours. There,280

they start with a modest-error PRG to get an ε-error hitting set by running the PRG for281

k = logn(1/ε) times according to partitions of [n] to k segments, resembling what we do.282

Instead of drawing the PRG’s seeds uniformly at random, they derandomize the construction283

using a hitter. We note however, that their analysis is very different from ours, and uses a284

progress measure concerning the probability of reaching an accepting state.285

2 Preliminaries286

2.1 Matrices, branching programs, and space complexity287

A matrix is Boolean if all its entries are in {0, 1}, and stochastic if all its entries are288

nonnegative and the sum of each column is 1. Denote by BSto(w) the set of w × w boolean289

stochastic matrices. We will denote by ∥·∥ the induced ℓ1 norm, i.e., ∥A∥ = maxj

∑
i |Ai,j |.290

We will often work with block matrices. For instance, we may interpret A ∈ Rnm×nm as291

an n × n matrix with entries which are m × m matrices. Whenever this interpretation is292

clear, we let A[i, j] be the (i, j)-th block. In this example, A[i, j] ∈ Rm×m.293

▶ Definition 4 (branching program). Let Σ be some alphabet and let n, w ∈ N. An (n, Σ, w)294

branching program (BP) is a sequence B = (B1, . . . , Bn), where each Bi : Σ → BSto(w).295

For b ≤ a we let B[b,a] be the (a − b + 1, Σ, w) BP (Ba, . . . , Bb).296

▶ Definition 5. The value of an (n, Σ, w) BP B = (B1, . . . , Bn) on x = (x1, . . . , xn) ∈ Σn,297

denoted val(B, x), is the realized w × w matrix of B when fed by x, i.e.298

val
(
B, x

)
= Bn(xn) · Bn−1(xn−1) · · · B1(x1).299

If B is the empty sequence, we set val(∅, x) = Iw.300

▶ Definition 6 (weighted PRG). We say W is an (n, Σ, w, ε)-WPRG against BPs with seed301

length s if:302

W = (I, µ) where I : {0, 1}s → Σn and µ : {0, 1}s → R, and,303

For every (n, Σ, w) BP B = (B1, . . . , Bn), it holds that304 ∥∥∥∥ E
x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
− E

x∈Σn

[
val
(
B, x

)]∥∥∥∥ ≤ ε.305

When µ ≡ 1, we say that W is a PRG.306

For 1 ≤ ℓ ≤ n we let Gℓ : {0, 1}s0 → Σℓ be the first ℓ symbols of the output of G. Note307

that if G : {0, 1}s0 → Σn is an (n, Σ, w, ε) PRG then Gℓ is an (ℓ, Σ, w, ε) PRG.308

We say f : Λ1 → Λ2 is computable in space s, if given x ∈ Λ1 and index j, f(x)j ∈ Λ2309

can be computed in additional work space that consists of s bits. We will use the following310

well known theorem regarding the space complexity of compositions.311

▶ Theorem 7. Let f1, f2 : {0, 1}⋆ → {0, 1}⋆ be two functions that can be computed in312

s1, s2 : N → N space such that s1(n), s2(n) = Ω(log n). Then, on input x, f2 ◦ f1 : {0, 1}⋆ →313

{0, 1}⋆ can be computed using O(s1(|x|) + s2(|f1(x)|)) space.314

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:9

2.2 Known PRG constructions315

▶ Theorem 8 ([17, 18]). For any positive integers n, w, any error parameter ε > 0 and any316

alphabet Σ, there exists an (n, Σ, w, ε) PRG with seed length317

s = O

(
log n · log nw|Σ|

ε

)
,318

computable in space min
{

O
(

log nw|Σ|
ε

)
, O
(

log n · log log nw|Σ|
ε

)}
.319

▶ Theorem 9 ([15]). For any positive integers n, w, any error parameter ε > 0 and any320

alphabet Σ, there exists an (n, Σ, w, ε) PRG with seed length321

s = log |Σ| + O
(

log n · log
(nw

ε

))
,322

computable in space O

(
log n ·

(
log log nw|Σ|

ε

)2
)

.323

Theorem 8 is derived almost directly from [17, 18], and Theorem 9 follows from [15],324

except for the space complexity which is implicit in those works and also depends on the325

specific implementation. For completeness, we give the proof of Theorem 8 in Appendix B.1,326

and of Theorem 9 in Appendix B.3.327

3 Richardson iteration328

Let A be an invertible n × n real matrix, and assume that B approximates A−1, concretely,329

∥B − A−1∥ ≤ ε0 for some sub-multiplicative norm. Richardson iteration is a method for330

obtaining a more refined approximation of A−1 given access to the crude B as well as to the331

original matrix A.332

▶ Lemma 10. Let L ∈ Rm×m be an invertible matrix and A ∈ Rm×m such that
∥∥L−1 − A

∥∥ ≤333

ε0. For any nonnegative integer k, define334

R(A, L, k) =
k∑

i=0
(I − AL)iA.335

Then,
∥∥L−1 − R(A, L, k)

∥∥ ≤
∥∥L−1

∥∥ · ∥L∥k+1 · εk+1
0 .336

The proof is deferred to Appendix A.337

Following [1] we will be interested in the following instantiation of the Richardson iteration.338

Let M = (M1, . . . , Mn) be a sequence of w ×w matrices. We consider the (n+1)w × (n+1)w339

matrix340

M =


0 0 . . . 0 0

M1 0 . . . 0 0
0 M2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Mn 0

 . (4)341

342

The Laplacian of M is L = I(n+1)w − M , and we treat L as an (n + 1) × (n + 1) block matrix.343

The following claim follows by a simple calculation.344

CCC 2021

22:10 Error Reduction For Weighted PRGs Against Read Once Branching Programs

▷ Claim 11. For i, j ∈ [n + 1], the (i, j)-th block of L−1 is given by345

L−1[i, j] =


Mi−1 · · · Mj i > j,

Iw i = j,

0 i < j.

346

Richardson for branching programs.347

Let B = (B1, . . . , Bn) be an (n, Σ, w) BP and let Mi = Eσ∈Σ[Bi(σ)] be the corresponding348

transition matrices. Thus, approximating the transition probabilities of B,349

E
x∈Σn

[
val
(
B, x

)]
= Mn · · · M1,350

amounts to approximating the lowest leftmost entry L−1[n + 1, 1].351

▷ Claim 12. Let B = (B1, . . . , Bn) be an (n, Σ, w) BP. Set Mi = Eσ∈Σ[Bi(σ)] and L as in352

Equation (4). Also, let G : {0, 1}s → Σn be an (n, Σ, w, ε0) PRG and consider353

A[a, b] =
{
Ex∈{0,1}s

[
val
(
B[b,a−1], Ga−b(x)

)]
, a ≥ b

0 a < b.
(5)354

Then,355 ∥∥L−1 − R(A, L, k)
∥∥ ≤ (n + 1) · (2ε0)k+1.356

Let A as in Equation (5) and write R(A, L, k) =
∑k

i=0 ∆iA where ∆ = I − AL. Denote357

A′ = A − I, i.e., A′ is the part of A below the main diagonal. Then,358

∆ = I − AL = I − A(I − M) = (I − A) + AM = AM − A′.359

In block notation, for a, b ∈ [n + 1], following Equation (4),360

AM [a, b] =
n+1∑
i=1

A[a, i]M [i, b] = A[a, b + 1]M [b + 1, b] = A[a, b + 1] · Mb.361

Thus,362

∆[a, b] =
{

A[a, b + 1] · Mb − A[a, b] a > b,

0 a ≤ b.
(6)363

Going back to R(A, L, k), for a > b we have that364

R(A, L, k)[a, b] = A[a, b] +
k∑

i=1

∑
a>ri>···>r1≥b

∆[a, ri] · ∆[ri, ri−1] · · · ∆[r2, r1] · A[r1, b]. (7)365

If we further let C0[a, b] = A[a, b + 1] · Mb and C1[a, b] = A[a, b], then366

R(A, L, k)[a, b] = A[a, b]+ (8)367 ∑
t∈{0,1}i

a>ri>···>r1≥b

∑
t1,...,ti∈{0,1}

(−1)t1+···+ti · Cti [a, ri] · · · Ct1 [r2, r1] · A[r1, b].368

369

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:11

4 The construction370

4.1 Black-box error reduction371

Let G : {0, 1}s0 → Σn be an (n, Σ, w, εG) and Gaux : {0, 1}saux → ({0, 1}s0 × Σ)k+1 be a372

(k + 1, {0, 1}s0 × Σ, w, εaux) PRG. Also, for t ∈ {0, 1} and σ ∈ Σ we let373

Gt,ℓ(x, σ) =
{

σ ◦ Gℓ−1(x) t = 0,

Gℓ(x) t = 1.
(9)374

375

We now define the WPRG (I, µ) : {0, 1}s → Σ × R. The seed x ∈ {0, 1}s to our WPRG376

is interpreted as follows.377

The first log(k + 1) bits encode i ∈ {0, . . . , k}.378

The next log
(

n
i

)
bits encode a sequence ℓ = (ℓ0, ℓ1, . . . , ℓi) such that ℓ0 + · · · + ℓi = n,379

ℓi, . . . , ℓ1 > 0, and ℓ0 ≥ 0.380

The next i bits are denoted by t = t = (t1, . . . , ti) ∈ {0, 1}i.381

The next saux bits are denoted by xaux ∈ {0, 1}saux .382

Overall, we can write x = (i, ℓ, t, xaux), and the WPRG (I, µ) has seed length383

s = saux + O(k log n). (10)384
385

For brevity we sometimes omit the dependence of i, (ℓ0, . . . , ℓi), (t1, . . . , ti), and xaux on x.386

We define I and µ as follows.387

I(x) =
{

Gn(Gaux(xaux)0) i = 0,

Gti,ℓi(Gaux(xaux)i) ◦ · · · ◦ Gt1,ℓ1(Gaux(xaux)1) ◦ Gℓ0(Gaux(xaux)0) otherwise.
388

389

390

µ(x) =
{

k + 1 i = 0,

(k + 1) ·
(

n
i

)
· 2i · (−1)t1+···+ti otherwise.

(11)391

392

where Gaux(xaux)j denotes the j’th symbol in Gaux(xaux) ∈ ({0, 1}s0 × Σ)k+1.393

The weights are chosen so that the approximation yielded by the above WPRG is a394

derandomized version of Equation (8) for (a, b) = (n + 1, 1). Note that in Equation (8)395

we used r1, . . . , ri which partitioned the interval [n + 1, 1], while in Equation (11) we used396

ℓ0, . . . , ℓi that sum to n. This is merely an alternative way of writing the sum – the ℓi-s are397

the sum of differences of the ri-s.398

4.2 Correctness399

In this section we use the same notation as in Section 3.400

▶ Lemma 13. Let 0 < ε < ε0 = 1
4n and let k = log1/ε0(1/ε). Suppose401

G : {0, 1}s0 → Σn is an
(

n, Σ, w, εG = ε0
2(n+1)

)
PRG, and,402

Gaux : {0, 1}saux → ({0, 1}s0 × Σ)k+1 is a (k + 1, {0, 1}s0 × Σ, w, εaux = ε3) PRG.403

Then, (I, µ) is an (n, Σ, w, ε) WPRG with seed length s = saux + O(log(1/ε)) computable in404

space O(space(Gaux) + space(G) + log s).405

CCC 2021

22:12 Error Reduction For Weighted PRGs Against Read Once Branching Programs

Proof. Assume k, G and Gaux are as in the hypothesis of the lemma. The space complexity406

follows from Theorem 7 and the seed length was analyzed in Equation (10). We are left to407

prove that (I, µ) is an (n, Σ, w, ε) WPRG. Fix any (n, Σ, w) BP B = (B1, . . . , Bn). Let A be408

the (n + 1)w × (n + 1)w lower triangular block matrix in which409

A[a, b] = E
x∈{0,1}s0

[
val
(
B[b,a−1], Ga−b(x)

)]
410

for a > b, and A[a, a] = Iw. Since G is
(

n, Σ, w, εG = ε0
2(n+1)

)
PRG we have that411 ∥∥L−1[a, b] − A[a, b]

∥∥ ≤ εG412

and
∥∥L−1 − A

∥∥ ≤ (n + 1)εG. By our choice of µ,413

E
x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
=

k∑
i=0

∑
t,ℓ

(−1)t1+···+ti · E
xaux

[
val
(
B, I(i, ℓ, t, xaux)

)]
,414

and415

R(A, L, k)[n + 1, 1] = A[n + 1, 1]+416

k∑
i=1

∑
t,r

(−1)t1+···+ti · Cti
[n + 1, ri] · · · Ct1 [r2, r1] · A[r1, 1],417

418

where ℓ0 + · · · + ℓi = n and n + 1 > ri > · · · > r1 ≥ 1. We soon prove:419

▷ Claim 14. For every fixed i ∈ {0, . . . , k}, t ∈ {0, 1}i, and ℓ such that ℓ0 + · · · + ℓi = n420 ∥∥∥∥ E
xaux

[
val
(
B, I(i, ℓ, t, xaux)

)]
− Cti [n + 1, ri] · · · Ct1 [r2, r1] · A[r1, 1]

∥∥∥∥ ≤ εaux,421

where rj = 1 + ℓ0 + · · · + ℓj−1.422

As we have at most (k + 1)nk2k summands, we see that423 ∥∥∥∥ E
x∈{0,1}s

[
µ(x) · val

(
B, I(x)

)]
− R(A, L, k)[n + 1, 1]

∥∥∥∥ ≤ (k + 1)nk2k · εaux424

≤ n2k

2 · εaux ≤ ε

2 .425
426

It therefore follows from Claim 12 that427 ∥∥∥∥R(A, L, k)[n + 1, 1] − E
x∈Σn

[
val
(
B, x

)]∥∥∥∥ ≤ (n + 1)(2(n + 1)εG)k+1
428

≤ 2n · εk+1
0 ≤ 2nε0ε = ε

2 ,429
430

which together completes the proof. ◀431

Proof of Claim 14. Fix i ∈ {0, . . . , k}, ℓ0 + · · · + ℓi = n, and t ∈ {0, 1}i and recall that432

rj = 1 + ℓ0 + · · · + ℓj−1. We define a (k + 1, {0, 1}s0 × Σ, w) BP B′ = (B′
0, . . . , B′

k) (that433

depends on i, ℓ, and t) such that for all j = 0, ..., k,434

B′
j(x, σ) =


val
(
B[rj ,rj+1−1], σ ◦ Gℓj−1(x)

)
j > 0, t = 0,

val
(
B[rj ,rj+1−1], Gℓj

(x)
)

j > 0, t = 1,

val
(
B[1,r1−1], Gℓ0(x)

)
j = 0.

(12)435

We stress that B′
j is a BP because a product of Boolean stochastic matrices is Boolean436

stochastic. The claim now follows since Gaux is a (k + 1, {0, 1}s0 × Σ, w, εaux) PRG. ◀437

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:13

4.3 The final construction438

We now instantiate Lemma 13 with Gaux being the INW PRG from Theorem 9 and G being439

an arbitrary PRG. The reason for using the INW generator is its additive dependence on440

log |Σ|.441

▶ Corollary 15. Let G : {0, 1}s0 → Σn be an (n, Σ, w, εG). Then, for any error parameter442

1
4n > ε > 0 there exists an (n, Σ, w, ε) WPRG with seed length443

s0 + O

(
log w

ε
· log logn

1
ε

)
444

computable in space O
(

space(G) + log logn(1/ε) ·
(
log log w

ε

)2
)

.445

Had we used Nisan’s PRG from Theorem 8 instead of INW then the seed length would446

deteriorate to447

O

(
s0 · log logn

1
ε

+ log w

ε
· log logn

1
ε

)
.448

Corollary 15 can be interpreted as an error reduction procedure for PRGs with a slight449

overhead in the seed and space complexity. We proceed by applying this error reduction to450

Nisan’s PRG from Theorem 8.451

▶ Corollary 16. For any positive integers n, w, any error parameter 1
4n > ε > 0 and any452

alphabet Σ, there exists an (n, Σ, w, ε) WPRG with seed length453

O

(
log n log(nw|Σ|) + log w

ε
· log logn

1
ε

)
454

computable in space O
(

log(nw|Σ|) + log logn(1/ε) ·
(
log log w

ε

)2
)

.455

Note that for ε which is not tiny the space complexity is dominated by the first term.456

Specifically, for ε > 2−2log1/3 n , w < 22log1/3 n the space complexity is indeed O(log(nw|Σ|)).457

Had we used INW instead, the space complexity would deteriorate to458

O

(
log n ·

(
log log nw|Σ|

ε

)2
+ log w

ε
· log logn

1
ε

)
.459

References460

1 AmirMahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles, Aaron Sidford, and461

Salil Vadhan. High-precision estimation of random walks in small space. In Proceedings of462

the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2020), pages463

1295–1306. IEEE, 2020.464

2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost465

k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.466

3 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge467

University Press, 2009.468

4 Allan Borodin, Stephen Cook, and Nicholas Pippenger. Parallel computation for well-endowed469

rings and space-bounded probabilistic machines. Information and Control, 58(1-3):113–136,470

1983.471

5 Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-distributions472

with near-optimal error for read-once branching programs. SIAM Journal on Computing,473

49(5):STOC18–242–STOC18–299, 2020.474

CCC 2021

22:14 Error Reduction For Weighted PRGs Against Read Once Branching Programs

6 Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions for read-once475

branching programs. In Proceedings of the 35th Computational Complexity Conference (CCC476

2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.477

7 Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of small space.478

In 35th Computational Complexity Conference (CCC 2020). Schloss Dagstuhl-Leibniz-Zentrum479

für Informatik, 2020.480

8 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron481

Sidford, and Adrian Vladu. Almost linear-time algorithms for Markov chains and new spectral482

primitives for directed graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium483

on Theory of Computing (STOC 2017). ACM, 2017.484

9 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian485

Vladu. Faster algorithms for computing the stationary distribution, simulating random walks,486

and more. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer487

Science (FOCS 2016). IEEE, 2016.488

10 Oded Goldreich. Computational complexity: a conceptual perspective. Cambridge University489

Press, Cambridge, 2008.490

11 Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties: A491

quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315–343, 1997.492

12 Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields of493

characteristic two. In Annual Symposium on Theoretical Aspects of Computer Science (STACS494

2006). Springer, 2006.495

13 William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success RL.496

SIAM Journal on Computing, 49(4):811–820, 2020.497

14 Russel Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:498

Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,499

65(4):672–694, 2002.500

15 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network501

algorithms. In Proceedings of the 26th Annual ACM SIGACT Symposium on Theory of502

Computing (STOC 1994). ACM, 1994.503

16 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means504

proving circuit lower bounds. computational complexity, 13(1-2):1–46, 2004.505

17 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,506

12(4):449–461, 1992.507

18 Noam Nisan. RL ⊆ SC. computational complexity, 4(1):1–11, 1994.508

19 Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and System509

Sciences, 49(2):149–167, 1994.510

20 Edward Pyne and Salil Vadhan. personal communication, February 2021.511

21 Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded512

computation. In Proceedings of the 31st Annual ACM SIGACT Symposium on Theory of513

Computing (STOC 1999). ACM, 1999.514

22 Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S2/3). Journal of Computer and515

System Sceinces, 58(2):376–403, 1999.516

23 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.517

Journal of Computer and System Sciences, 4(2):177–192, Apr 1970.518

A Proof of Lemma 10519

We restate Lemma 10.520

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:15

▶ Lemma 17. Let L ∈ Rm×m be an invertible matrix and A ∈ Rm×m such that
∥∥L−1 − A

∥∥ ≤521

ε0. For any nonnegative integer k, define522

R(A, L, k) =
k∑

i=0
(I − AL)iA.523

Then,
∥∥L−1 − R(A, L, k)

∥∥ ≤
∥∥L−1

∥∥ · ∥L∥k+1 · εk+1
0 .524

Proof. For any matrix Z, the matrices I and Z commute, and so by a straightforward525

induction,526

I −
k∑

i=0
(I − Z)iZ = (I − Z)k+1.527

In particular, for Z = AL,528

I − R(A, L, k) · L = (I − AL)k+1.529

Thus,530 ∥∥L−1 − R(A, L, k)
∥∥ =

∥∥(I − R(A, L, k) · L) · L−1∥∥531

≤
∥∥L−1∥∥ · ∥I − R(A, L, k) · L∥532

≤
∥∥L−1∥∥ · ∥I − AL∥k+1

533

=
∥∥L−1∥∥ ·

∥∥(L−1 − A) · L
∥∥k+1

534

≤
∥∥L−1∥∥ · ∥L∥k+1 · εk+1

0 .535
536

◀537

B The space complexity of some pseudorandom objects538

In this section we show how to achieve the space complexity declared in Theorem 8 and539

Theorem 9. For the INW generator we choose a specific implementation with a small space540

complexity. The constructions are well known, and the variant of INW we use was explored541

by [12]. We give it here for completeness.542

B.1 Nisan’s generator543

Proof sketch of Theorem 8. We are given parameters n, Σ, w, ε. We set X = [A] for544

A = O
(

nwΣ
ε

)
. We let H be a 2-universal family of hash functions over X where |H| = A2

545

and h(x), for h ∈ H and x ∈ X, can be computed in space O(log log |X|) (see [17, 18]).546

Nisan’s generator interprets the seed as y, h1, . . . , hlog n, where y ∈ X, and h1, . . . , hlog n ∈547

H. For j ∈ [n], the j-th symbol in the output of the generator is hb1
1

(
hb2

2

(
· · · h

blog n

log n (y)
))

,548

where (b1, . . . , blog n) ∈ {0, 1}log n is the binary representation of j, and hb is either h, if b = 1,549

or the identity function, if b = 0. Given y, h1, . . . , hlog n, j = (b1, . . . , blog n) we can compute550

the j-th output symbol in the following two alternative ways.551

We can successively compute h
bj

j

(
· · · h

blog n

log n (y)
)

for j = log n, . . . , 1, each time keeping552

the current X-symbol. This takes553

O

(
log nw|Σ|

ε
+ log log n + log log |X|

)
= O

(
log nw|Σ|

ε

)
554

space.555

CCC 2021

22:16 Error Reduction For Weighted PRGs Against Read Once Branching Programs

Alternatively, we can do the above computation using composition of space bounded556

reductions, resulting in space complexity557

O(log n · log log |X|) = O

(
log n · log log nw|Σ|

ε

)
.558

◀559

B.2 A high min-entropy extractor560

To apply INW, we need a space-efficient seeded extractor with a small entropy loss in the561

high min-entropy regime. Goldreich and Wigderson [11] gave such a construction utilizing a562

regular expander G = (V, E) with a small normalized second eigenvalue. For our expander,563

we choose a Cayley graph over the commutative group Zn
2 with a generator set S ⊆ {0, 1}n

564

that is λ-biased. It is well known that Cay(Zn
2 , S) has normalized second largest eigenvalue565

at most λ. For the λ-biased set we choose a construction from [2]. Altogether, this unfolds566

for the following.567

For the λ-biased set S, first pick q to be the first power of two larger than n
λ . The568

set S is of cardinality q2. For every α, β ∈ Fq there is an elements sα,β ∈ Zn
2 where569

(sα,β)i = ⟨αi, β⟩, such that multiplication is in Fq and the inner product is over Z2. [2]570

showed the set is λ-biased.571

We let G = (V, E) with V = Zn
2 and (x, y) ∈ E iff x + y ∈ S. G is a λ-expander.572

The extractor GW : {0, 1}n × [D] → {0, 1}n is defined by letting G(x, i) be the i-th573

neighbour of x in the graph G.574

▷ Claim 18. Let 0 < ∆ < n and set G and GW as above. Then, GW : {0, 1}n × [D] → {0, 1}n
575

is a (k = n − ∆, ε) extractor with seed length d = O(∆ + log n
ε) and space complexity576

O(log n · log(∆ + log(n/ε))).577

Proof. For correctness, note that the expander mixing lemma shows that GW is an (n−∆, ε =578

O(2∆/2λ)) extractor.579

Seed length. The seed length of this extractor is log |S| = O(log n
λ) = O(log n2∆

ε) = O(∆ +580

log n
ε).581

Space complexity. The space complexity of computing GW(x, y) given x and y, is the space582

needed to compute sy ∈ S from y = (α, β) ∈ F2
q, plus the space needed to compute583

x + sy. The dominating step in computing sy is computing αi (for i ≤ n) which can584

be done in O(log n log log q) with space composition. Altogether, the space needed is585

O(log n · log log n
λ) = O

(
log n · log log n2∆

ε

)
.586

We note that Healy and Viola [12] gave an extremely efficient implementation of the above587

AGHP generator, yielding a better space complexity of O(log(n + log q)) to compute588

⟨αi, β⟩. However, in our overall setting of parameters it will make negligible difference.589

◀590

We remark that by using expanders with better dependence between D and λ, one can get591

d = O(∆ + log 1
ε), but here we care more about the space complexity, and log n factors are592

negligible for us.593

G. Cohen, D. Doron, O. Renard, O. Sberlo, and A. Ta-Shma 22:17

B.3 The INW generator594

Proof sketch of Theorem 9. We consider the INW generator [15] instantiated with extrac-595

tors (as, e.g., in [21]). We are given parameters n, Σ, w, and ε = εINW . We set parameters596

∆ = log w + O(log n
ε), and d as the seed length for the extractor of Claim 18 for length n,597

error εExt = ε
n and ∆. We let s = log |Σ|+log n ·2d and we assume s ≤ n. We let ℓi = s− i ·∆598

for 0 ≤ i ≤ n.599

Given a seed x ∈ {0, 1}s we view the computation of INW(x) as a full binary tree of depth600

log n. Nodes in level i of the tree are labeled by strings of length ℓi. The root (at level 0) is601

labeled by x (of length ℓ0 = s). Given any internal node in level i ∈ {0, . . . , log n} labeled by602

some string z ∈ {0, 1}ℓi , we write z = z1 ◦ z2 with zi ∈ {0, 1}ℓi+1 and z2 ∈ {0, 1}d. The left603

child of z is labeled with z1, and the right child of z is labeled with Exti(z1, z2), where Exti604

is given by Claim 18 for ∆, length ℓi+1 and error εExt (notice that since ℓi < n, d bits suffice605

for the seed). INW(x) is the concatenation of the leaf’s labels, from left to right, truncating606

outputs to log |Σ| bits.607

Given an index j ∈ [n], computing INW(x)j ∈ Σ can be done by walking down the608

computation tree, and each time either truncating a string or invoking an extractor. By609

composition of space bounded reductions the space complexity of the construction is log n610

times the space complexity of the worst extractor used. That is, log n · log ℓ0 · log(∆+log ℓ0
εExt

).611

Plugging-in ∆ and εExt, the space complexity is bounded by612

O
(

log n · log ℓ0 · log log nw

ε

)
= O

(
log n · log

(
log |Σ| + log n log nw

ε

)
· log log nw

ε

)
613

= O

(
log n ·

(
log log nw|Σ|

ε

)2
)

.614

615

◀616

CCC 2021

	1 Introduction
	1.1 A brief account of space-bounded derandomization
	1.2 Pseudorandom generators for ROBPs
	1.3 Pseudorandom pseudo-distributions for ROBPs
	1.4 The error parameter
	1.5 Our contribution
	1.6 An overview of our construction
	1.7 A comparison BCG
	1.7.1 A brief overview of BCG
	1.7.2 Comparison with BCG
	1.7.3 Common aspects with HZ, CH

	2 Preliminaries
	2.1 Matrices, branching programs, and space complexity
	2.2 Known PRG constructions

	3 Richardson iteration
	4 The construction
	4.1 Black-box error reduction
	4.2 Correctness
	4.3 The final construction

	A Missing proofs
	B The space complexity of some pseudorandom objects
	B.1 Nisan's generator
	B.2 A high min-entropy extractor
	B.3 The INW generator

