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can be broken down to four mappings of n = 4 to M = 16 which only
requires 16 binary sequences in each smaller mapping to be mapped
while preserving the distance.
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Improving the Alphabet-Size in Expander-Based Code
Constructions

Eran Rom and Amnon Ta-Shma

Abstract—Various code constructions use expander graphs to improve
the error resilience. Often the use of expanding graphs comes at the expense
of the alphabet size. In this correspondence, we show that by replacing the
balanced expanding graphs used in the above constructions with unbal-
anced dispersers the alphabet size can be dramatically improved.

Index Terms—Disperser graphs, expander graphs, extractor codes, list
decoding, randomness extractors.

I. INTRODUCTION

Error-correcting codes were built to deal with the task of correcting
errors in transmission over noisy channels. Formally, an (N; n; d)q1

error correcting code over alphabet �, where j�j = q, is a subset
C � �N of cardinality qn in which every two elements are distinct
in at least d coordinates. n is called the dimension of the code, N the
block length of the code, and d the distance of the code. We call d

N

the relative distance of the code. If C is a linear subspace of [ q]
N ,

where� is associated with some finite field q we say thatC is a linear
code, and denote it [N; n; d]q code. From the definition we see that
one can uniquely identify a codeword in which at most d�1

2
errors oc-

curred during transmission. Moreover, since two codewords from �N

can differ in at most N coordinates, the largest number of errors from
which unique decoding is possible is N=2.

This motivates the list decoding problem, first defined in [4]. In list
decoding we give up unique decoding, allowing potentially more than
N=2 errors, and require that there are only few possible codewords
having some modest agreement with any received word. Formally, we
say that an (N;n; d)q code C is (p;K)-list decodable, if for every r 2
�N ; jfc 2 C j�(r; c) � pNgj � K , where �(x; y) is the number of
coordinates in which x and y differ. That is, the number of codewords
which agree with r on at least (1� p)N coordinates is at most K . We
call the ratio n=N the rate of the code, and p the error rate.

We can demonstrate the difference between unique decoding
and list decoding with Reed-Solomon codes. Reed-Solomon codes
are linear [N; n;N � n + 1]q codes, defined for every q such
that q is a finite field, and n � N � q. Every (N;n; d)q
code is (1 � 1� d=N; qN)-list decodable [5, Lecture 8]. For
Reed–Solomon codes there exists an efficient list decoding algorithm
[6]. Thus, unique decoding is possible with at most N=2 errors, while
by [6] list decoding is possible with up to N � p

Nn errors, and the
number of all possible decodings is small.
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Often, good code constructions exist for constant relative distance,
but are hard to get for large relative distance. For example, Justesen
codes are asymptotically good (i.e., have both constant rate and con-
stant relative distance), but the rate dependence on the distance as the
relative distance tends to half (and to one over larger alphabet size) is
not good. A similar phenomenon exists with list-decoding [3].

In [1] the authors get a better dependence of the rate on the dis-
tance, by starting with a constant error Justesen code amplified using
an expander-based construction. This approach has been influential in
coding theory, and several papers employ this approach for dealing with
high noise in both the unique-decoding and the list-decoding setting
(e.g., [1]–[3]). A drawback of this approach, is that often the resulting
code has a larger than needed alphabet size (for the precise parameters
see later).

The amplification above can be done using any disperser and, in fact,
a good expander is just a special case of a balanced disperser. In this
correspondence, we show that by carefully choosing the dispersers used
and, in particular, by taking unbalanced dispersers, we can dramatically
improve the alphabet size without harming the other parameters. We
illustrate this on two case studies: the Alon et al. construction of an
explicit asymptotically good code [1] and the construction of good,
high-noise list-decodable codes [3].

A. Two Case Studies

1) High-Noise Unique-Decodable Codes: As we said before, [1]
build a code G � CJus by starting with a constant-error Justesen code
CJus and composing it with an expanderG. They show that the compo-
sition gives asymptotically good codes with relative distance arbitrarily
close to 1, but with large alphabet size. We show that the alphabet size
can be much smaller when using an unbalanced disperser G.

Theorem 1: For every � > 0, there exists an explicitly constructible
family of codes of rate 
(�), relative distance (1� �) over alphabet of
size:

• 2O( ), when G is a good expander as in [1];

• 22 , when G is the currently best explicit unbalanced
disperser;

• poly( 1
�
) when using the best nonexplicit disperser.

Similar improvements apply to other results in [1].
2) High-Noise List-Decodable Codes: A simple probabilistic argu-

ment shows that (1��; O( 1
�
))-list decodable codes with rate = 
(�),

and j�j = O( 1
�
) exist. Also the rate must be O(�), and j�j = 
( 1

�
).

Until recently, the best known explicit constructions only achieved rate
of �2. Recently, Guruswami in [3], used an expander based construction
to give the first explicit construction of rate 
( �

log
). However,

the alphabet size (and the decoding list size in the fully explicit con-
struction) is huge. The relationship that [3] has found between strong
extractors2 and high-noise list decodable codes, and our improvement
are given in the following theorem.

Theorem 2 (Connection Between Strong Extractors and L.D.C.):
Let K = K(N) be arbitrary. If a family of (K; 1=4)-strong extrac-
tors f : [N ] � [D] ! [M ] with degree D = O(logN) and entropy
loss O(1) can be explicitly constructed, then one can explicitly con-
struct (1� �; O(1=�))-list decodable codes of rate 
( �

log(1=�)
) over an

alphabet size:
• 2O(� log(1=�)) when using balanced expanders [3];

• 22 when using the currently best explicit disperser;
• poly( 1

�
) when using the best nonexplicit disperser.

The above construction assumes the existence of a family of extrac-
tors that nonexplicitly exists, but currently we do not know how to

2The definition of strong extractors and dispersers is given in Section I-B1

construct. Using the currently best explicit extractors, one gets a poly-

nomial time constructible family of (1 � �; 2O(
p
n logn))-list decod-

able codes, of similar rate and alphabet size. That is, all the parameters
(and the improvements) stay the same, and the price of using explicit
(nonoptimal) extractor constructions is in the huge number of code-
words in the output list.

Another point to make is that Theorem 2 gives (under the assumption
made) an explicit code with good list decoding properties, i.e., for any
given word w there are only few codewords that are too close to it.
Theorem 2, however, does not guarantee efficient list decoding. For
efficient list decoding one needs to require further properties from the
extractor family assumed. Such properties are known for some explicit
constructions (e.g., the one in [7]) but not for families with the strong
parameters required for the theorem.

B. The Technique

To understand our technical contribution we need to understand the
previous work. We first introduce the basic objects (extractors, dis-
persers, extractor codes), then the error-reduction technique of [1], and
the decoding algorithm of [3], and finally our improvement.

1) Introducing the Basic Objects:
• Strong Extractors. An extractor is a function which extracts ran-

domness from a weak random source. A weak random source
is a distribution which might be far form uniform but still has
some randomness in it. A standard measure for the amount of
randomness contained in a source is its min-entropy. A distribu-
tion X over f0; 1gn has k min-entropy, denoted H1(X) = k,
if 8x;X(x) � 2�k . If H1(X) = k we say that X has k bits
of min-entropy. An example of a weak random source, having k
min-entropy is a uniform distribution over some subset of 2k ele-
ments from f0; 1gn.
A simple fact is that randomness extraction from a weak source
cannot be done without additional randomness independent of the
source. This leads to the following definition.

Definition 1: F : [N ]� [D]! [M ] is a (K; �ext)-strong extractor
if for every X distributed over [N ] with H1(X) � logK , the distri-
bution y�F (x; y) is �ext-close toU[D]�[M ],3 where x is drawn fromX
and y is taken uniformly at random from [D]. The entropy loss of the
strong extractor is K

M
. The extractor error is �ext . The strong extractor

is explicit if F (x; y) can be computed in time polynomial in the input
length, i.e., polynomial in logN + logD.

In other words, the extractor gets an input from some unknown dis-
tribution X that is guaranteed to have at least logK min-entropy and
uses some additional logD truly random bits, called the seed of the
extractor, to extract logM random bits that together with the seed are
close to uniform. An extractor (not necessarily strong) is one where we
only require that the logM output bits are close to uniform.

• Dispersers. A disperser is the one-sided variant of an extractor.
Instead of requiring that the output is �-close to the uniform dis-
tribution, we require that the disperser’s output covers at least a
1 � � fraction of the target set.

Definition 2: G : [L] � [T ] ! [D] is a (H; �disp)-disperser if for
every X � [L] with jXj � H we have j�G(X)j � (1 � �disp)D,
where �G(X) = fG(`; j) j ` 2 X; j 2 [T ]g is the neighbors set of X
in G. The entropy loss of the disperser is HT

D
. The disperser is explicit

ifG(x; y) can be computed in time polynomial in the input length, i.e.,
polynomial in logL + log T .

In Definition 1, we defined a strong extractor, while in Definition 2,
we defined a (not necessarily strong) disperser. This is due to the way
we use these objects later on.

3Two distributions are �-close if their statistical distance—defined in Sec-
tion II—is smaller than �.
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Fig. 1. The encoding: x ; . . . ; x 2 � on the left—the coordinates of some
codeword C(x)—are “put” along the disperser’s output [D], defining for each
` 2 [L] an ordered vector of its neighbors: (x ; . . . ; x ) 2 � ,
where x is the symbol that was matched to G(`; t) 2 [D].
(x ; . . . ; x ) is the codeword G � C(x).

• Extractor Codes. [8] observed a simple connection between strong
extractors and list decodable codes. Given a strong extractor F :
[N ]�[D]! [M ], we define a codeC : [N ]! [M ]D as follows:
8 x 2 [N ]; C(x)i = F (x; i). By definition the rate of the code is
logN

D logM
. The connection is summarized by the following lemma.

Lemma 1: If F : [N ]� [D] ! [M ] is a (K; �ext)-strong extractor
then the extractor code C(x) is (1 � ( 1

M
+ �ext); K)-list decodable

code.
Also observed by [8] is that extractor codes meet a property stronger

than list decoding, known as list recovering [9]. List recovering deals
with the situation where the ith symbol of the received word is only
known to be in some set Si � �. The goal is to find a code C � �N

such that for every given S1; . . . SN � � describing a received word,
there are not to many codewords C(x) with C(x)i 2 Si for many
indices i. List decoding is the case where all sets Si are of size 1.

2) Error Reduction Using Expanders: As we said before, the tech-
nique of code amplification using expanders was introduced in [1].
Here is how the amplification is done: Assume C : �n ! �D is
a [D; n; �D]q code, with rate r = n

D
. Let G : [L] � [T ] ! [D]

be a (H = �L; �disp)-disperser with entropy loss �. Define a code
G�C : �n ! [�T ]L as follows. For x 2 �n letC(x) be its encoding
using C . Given C(x) 2 �D , we put its symbols along the output ver-
tices of G, such that the i’th symbol of the codeword is matched with
the i’th output element ofG. We now look at the input elements in [L],
each such element has T neighbors each matched with a symbol from
�. For each input element we collect the symbols of its neighbors and
get a symbol in �T . Altogether, we get a code G � C : �n ! [�T ]L.
The encoding is illustrated in Fig. 1.

A simple argument shows the following.
Lemma 2: If �disp < � then G � C(x) is a [L; r�

�
L; (1 � �)L]q

code.
The simple proof is given for completeness in Section III. Thus, we

increase the relative distance from � in the original code C to 1� � in
the new code G �C , at the expense of enlarging the alphabet size from
q to qT . We therefore see that controlling T should be a major goal for
us. We also see that the quality of the new rate is largely influenced by
the entropy-loss of the disperser.

3) Decoding the New Code: The code constructed above is explicit
and Lemma 2 shows it can tolerate high noise. It does not admit, how-
ever, explicit decoding. Guruswami and Indyk [2] were the first to pro-
pose a decoding mechanism for the code, and for that they replaced the
original code C with a list-decodable code. This was further general-
ized in [3] where C is list-recoverable. We now describe the decoding
mechanism.

Imagine we start with some corrupted codeword z1; . . . ; zL. Each
zi is in �T , and the T symbols (in a correct codeword) are supposed

Fig. 2. The Decoding Procedure: Let z = (�z ; . . . ; �z ) be an arbitrary word
in [M ] . For each ` 2 [L]; �z 2 [M ] defines a set S � [D] � [M ] as
follows. The pair (i; s) 2 S if i 2 [D] is say the tth neighbor of ` 2 [L] and
s is the tth symbol in the ordered vector �z .

to come from T values of C(x). We can therefore think of zi as voting
for the values of its neighbors. We therefore do the following. For
each yi (i = 1; . . . ; D) we form a set Si with all the votes about
its value. We then use the fact that C is list-recoverable to deduce
that there are only few possible code-words having much agreement
with S1; . . . ; SD . The decoding process is formally explained in
Section IV-A and is illustrated in Fig. 2.

4) Our Improvement: What we do is replace the expander compo-
nent in [1] and [3] with a good unbalanced disperser. As we discussed
above, what is needed in both applications is a disperser for the high
min-entropy case that has optimal entropy loss and an extremely small
degree. Surprisingly, such objects are possible and nonexplicitly exist.
Furthermore, and fortunately, an explicit construction of such a graph
was given recently [10] and using such a graph, our improvement over
the construction in [3] can be made explicit. For every code built using
Guruswami’s scheme, the expander component can be replaced with
the explicit disperser and improve the alphabet size. As the disperser is
explicit, the decoding scheme mentioned in [3] and the time it takes do
not change.

II. PRELIMINARIES

A. Statistical Distance

We need the following standard definitions. A probability
distribution X over 
 is a function X : 
 ! [0; 1], such
that

x2
X(x) = 1. Un is the uniform distribution over
f0; 1gn. The statistical distance between two probability dis-
tributions ; distributed X; Y over 
, denoted jX � Y j, is
1
2 x2
 jX(x)� Y (x)j = maxS�
 jX(S)� Y (S)j. X; Y are
�-close if jX � Y j � �.

B. Bounds of the Parameters Achievable for Extractors

Ta-Shma and Radhakrishnan [11] show that a (K; �ext)-strong ex-
tractor F : [N ]� [D] ! [M ] must have degree D = 
( 1

�
log N

K
),

and entropy loss K

M
= O( 1

�
). Also shown in [11] are matching im-

plicit upper bounds. The degree lower bound gives the minimal true
randomness needed for extracting randomness from a weak source. The
entropy loss lower bound gives the amount of randomness lost by the
process.

C. Some Dispersers’ Parameters

We give below the parameters of the dispersers we use throughout
the correspondence.
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Alon et al. [1] use a balanced expander denoted Gbalaced : [D] �
[T ] ! [D], which is a (�D; �disp)-disperser with degree

T �
4 1

�
� 1

�
(1)

and with entropy loss

� = �T � 4
1

�disp
� 1 (2)

[11] show the existence of optimal Gopt : [L] � [T ] ! [D]
(�L; �disp)-disperser with degree

T = O
1

�disp
log

1

�
(3)

and with entropy loss

� = O log
1

�disp
: (4)

Finally, Reingold et al. [10] give the following explicit extractor (which
we use for its expansion properties) based on the zig-zag construction
Gexplicit : [L] � [T ] ! [D], which is a (�L; �disp)-disperser with
degree

T = 2
O(log log( )

(5)

and with entropy loss

� = O
1

�2disp
: (6)

In the cases we study we demonstrate the improvement in the alphabet
size when replacing Gbalanced with Gopt and with Gexplicit .

D. Reverse Expansion

A basic property of dispersers is that expansion works for both sides,
as demonstrated in the following lemma.

Lemma 3: (Reverse expansion) If G : [L] � [T ] ! [D] is a
(�L; �disp)-disperser then for any subset Y � [D]; jY j � �dispD, we
have j�G(Y )j � (1 � �)L.

Proof: Any X � [L]; jXj � �L has j�G(X)j � (1� �disp)D.
This implies that for any subset Y 2 [D]; jY j � �dispD there can be a
set of size at most �L in [L] missed by Y . Thus, j�G(Y )j � (1��)L.

E. The Mixing Property

An important property of extractors is mixing [12, Chap 9]. We in-
troduce some notation. For x 2 [N ] we define �F (x) to be the ordered
neighbors of x. Formally

�F (x) = f(i; F (x; i)) j i 2 [D]g: (7)

The mixing property says that
Fact 1: If F : [N ] � [D] ! [M ] is a (K; �ext)-strong extractor,

then for every S � [D] � [M ], there are at most K elements x 2 [N ]
satisfying

j�F (x) \ Sj

D
�

jSj

D �M
� �ext: (8)

III. IMPROVING THE ALPHABET SIZE IN HIGH-NOISE UNIQUE

DECODABLE CODES

We begin with proving Lemma 1.
Lemma 1: Let G : [L]� [T ] ! [D] be a (�L; �disp)-disperser with

entropy loss �. Let C be a [D; rD; �D]q code. If �disp < � then G�C
is a [L; r��

�
L; (1 � �)L]q code.

Proof: The alphabet size of G � C is immediate from the con-
struction. The rate of the construction is also immediate

r �
D log q

L log(qT )
= r �

D

LT
=

r � �

�
: (9)

For the relative distance, let C(x) be a nonzero codeword of C . C is
linear with relative distance �, and so there are at least �D coordinates
which are not zero in C(x). By the reverse expansion of dispersers
(Lemma 3), these �D > �dispD coordinates have at least (1 � �)L
neighbors in G, yielding (1 � �)L coordinates different from zero in
G �C(x). Thus, the minimal weight of nonzero codeword in G �C is
at least (1� �)L, and therefore G �C has relative distance (1� �).

Theorem 1 immediately follows from the above lemma.
Proof: Let � > 0. TakeC to be a [D; rJusD; �JusD]q Justesen

code having constant rate, constant relative distance and constant al-
phabet size. Take G : [L] � [T ] ! [D] to be a (�L; �Jus)-disperser.
By the above lemma the resulting code G � C is a [L; r ��

�
L; (1 �

�)L]q code. Plugging in the degree and entropy loss of the dispersers
Gbalanced (1), (2),Gexplicit (5), (6) andGopt (3), (4) gives the claimed
rate and alphabet size.

IV. A BETTER CONNECTION BETWEEN STRONG EXTRACTORS AND

L.D.C.

We now turn to our second case study, where we improve on the
connection between strong extractors and List decodable codes shown
by Guruswami in [3]. Guruswami uses the basic construction of [1],
described in Section I-B2, where the code used is an extractor code
(mentioned in Section I-B), and the expanding graph is the balanced
expander used in [1]. The lemma below was shown by Guruswami for
a balanced expander, and we restate it for unbalanced dispersers:

Lemma 4: LetF : [N ]�[D] ! [M ] be a strong (K; �ext)-extractor
and G : [L] � [T ] ! [D] be a (�L; �disp)-disperser. If M � D �

L�T

1�� ��
, thenG�CF is a (1��;K)-list decodable, whereG�CF

is the composition of the extractor code CF with the disperser G as
described in Section I-B2.

The proof is practically the same, and we give it below for complete-
ness.

A. The Decoding Procedure

For the proof we first define the decoding procedure for G � CF .
An eye on Fig. 2 might be helpful. The decoding procedure gets as
input an arbitrary word in [MT ]L and outputs a set S � [D]� [M ] as
follows: Let z = (�z1; . . . ; �zL) 2 [MT ]L. For each 1 � ` � L, the `th
coordinate �z` 2 [M ]T defines a subset S` � [D] � [M ] as follows:

S` = f(g(`; t); z`;t) j 1 � t � Tg: (10)

To see why we choose these sets, notice that when z is a legitimate
codeword of G � CF , all pairs in S` are in the set f(i; yi)gDi=1. When
z is an arbitrary word, not necessarily a codeword, two different co-
ordinates �z` and �z` having a mutual neighbor i 2 [D] can “vote”
differently about which symbol should reside in the ith coordinate of
[D]. In other words if i is the jth neighbor of �z` and the kth neighbor
of �z` then it may happen that �z` 6= �z` . We define the set S of
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z = (�z1; . . . ; �zL) to be L

`=1 S`. We now turn to the proof of the above
lemma.

Proof: Let z = (�z1; . . . ; �zL) 2 [MT ]L be an arbitrary word
in [MT ]L. Let S � [D] � [M ] be the output of the above decoding
procedure above when given z. Suppose a codeword G � CF (x) 2
[MT ]L agrees with z on a set H � [L] of size at least �L. Now, if
` 2 H then (i; f(x; i)) 2 S` for every i 2 [D] such that i is a neighbor
of ` in G. Since G is a (H; �disp)-disperser, the set of neighbors of
H has at least (1 � �disp)D elements. Hence, j�F (x) \ Sj � (1 �
�disp)D. Noting that jSj � L � T , and using the assumption M �D �

L�T
1�� ��

, we see that jSj
MD

� 1� �ext � �disp and together

j�F (x) \ Sj

D
�

jSj

MD
� �ext: (11)

By Fact 1 we conclude that there are at most Ks’s for which G �
CF (x) agrees with z on at least H coordinates. Hence, the code is
(1� �;K)-list decodable.

B. What Makes the Difference

First, let us have a second look at Guruswami’s construction. A
strong extractor gives a list decodable code that can correct 1�� noise
with �2 penalty in the rate, and so we do not lose much when � is a
constant. Indeed, on the left of Fig. 2 we use a strong extractor for a
constant error rate.

We are then left with the task of amplifying the error. For that Gu-
ruswami uses a balanced expander. The property that we need from
the expander, is that every set (of relatively small cardinality �L) on
the right hand side (of Fig. 2) sees almost all of the vertices on the left
hand side as its neighbors (more precisely 1� �disp of them).

Taking a balanced expander does the job, but at the cost of enlarging
the disperser degree T . This is because �L vertices can have at most
�LT neighbors, and so if �LT is almost D and the graph is balanced
L = D, it must be that the degree T is an order of ( 1

�
). This makes the

alphabet size exponential in 1
�

. On the other hand, if we take a larger
right hand sideL (such that �L is roughlyD) we can use a much smaller
degree T (an order of log(1

�
)) and still have the same property.

One can worry what happens to the rate when taking an unbalanced
disperser. However, as we saw before the new rate is r��

�
, where r in

this case is the rate of the extractor code. Thus, by taking a disperser
with optimal entropy loss, we don’t lose on the rate, while dramatically
improving the alphabet size.

For this to work we need a good disperser that works for the high
min-entropy setting and tiny degree. Luckily, the recent Zig-Zag con-
struction [10] explicitly constructs such a graph. We mention that �L
min-entropy is considered high, as it has log(L)� log( 1

�
) min-entropy,

and the entropy deficiency is only log( 1
�
).

C. Analyzing the Parameters

We now find out the parameters of the extractor and disperser to be
used in the construction, so as to get a (1 � �; O( 1

�
))-list decodable

code. These parameters must not violate the lower bounds of the ex-
tractor and disperser, and the condition of Lemma 4. Since the lower
bounds match nonexplicit upper bounds, the parameters we find give a
nonexplicit construction for the desired code.

1) The Constraints: First, we write down all the constraints. The
bounds we give are both lower bounds, and achievable by nonexplicit
constructions. We have

D = 

1

�2ext
� log

N

K
: (12)

M = O K�2ext : (13)

T = 

1

�disp
� log(

1

�
) : (14)

D = O
�LT

log 1
�

: (15)

M �D �
L � T

1� �ext � �disp
: (16)

The first two equations are the degree and entropy loss of the extractor,
the third and fourth are the degree and entropy loss of the disperser,
and the fifth is the construction bound that guarantees that the set S is
small in [D] � [M ].

2) A Specific Choice of Parameters: We now choose parameters.
We first set �ext; �disp to be small constants, say we set both to be 1

4
.

In order to get a (1� �; O( 1
�
))-list decodable code we set K = �( 1

�
).

With these choices we have D = �(log(N));M = �(K) = �( 1
�
),

and T = �(log 1
�
). To satisfy (15) we need to take L such that �L =

�(D
T
) = �( log(N)

log
) which implies that L = �( log(N)

��log( )
). Finally, we

check (16). We see thatM �D = �( log(N)
�

) andL�T = �( log(N)
�

), so
with the proper choice of constants the equation holds. We let N = 2n

and � > 0 be our basic parameters. We summarize all other parameters
as functions in n and �. We have

K = �
1

�
: (17)

D = �(n): (18)

M = �
1

�
: (19)

L = �
n

� � log( 1
�
)

: (20)

H = �
n

log( 1
�
)

: (21)

T = � log
1

�
: (22)

Thus, rate = logN
L�T logM

is �( �

log( )
), and the alphabet size j�j =MT

is 2O(log ( )). This proves that using the best implicit disperses one
gets the parameters stated in Theorem 2 for the best possible disperser.

V. EXPLICIT CONSTRUCTIONS

We now make the construction explicit by plugging in explicit dis-
perser and explicit strong extractor. Naturally, the parameters deteri-
orate. As before, we set the extractor and disperser errors to be con-
stants, say �ext = �disp = 1

4
. We note that (16) now becomes, L � T �

1
2
�M �D For the explicit disperser we use the Zig-Zag construction,

mentioned in Section II-C. By (5), (6), having constant �disp the dis-
perser Gexplicit : [L] � [T ] ! [D] has degree

T = 2O(polyloglog( )) (23)

and entropy loss

� = O(1): (24)

For the explicit extractorF : [N ]�[D]! [M ] we use the best explicit
construction to date of a strong extractor with almost linear seed length
due to [13].

Fact 2 [[13]]: For Every m =m(n); k = k(n), and �ext= �ext(n)
such that 3m n log(n=�ext) � k � n, there is an explicit family of
(k; �ext)-strong extractors En : f0; 1gn � f0; 1gd ! f0; 1gm with
d = logn + O(log m

�
).
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Denoting N = 2n; K = 2k; D = 2d, and M = 2m, and taking a

�ext =
1
4

, the above fact states that for every MO(
p

logN log logN) �
K � N , there exists an explicit (K; 1

4
)-strong extractor with degree

D = logN logO(1)
M: (25)

Again, we take M = �( 1
�
), meaning K = 2O(log( )

p
logN log logN),

and D = logN logO(1)( 1
�
). It can be easily verified that by taking

an appropriate constant in the �( � ) notation in the choice of M , the
construction constraint: L � T � 1

2
�M � D is satisfied. Plugging the

above disperser and extractor in the construction we get alphabet size

M
T = 22 (26)

and rate

logN

D logM

�

�
=

�

logO(1)( 1
�
)
: (27)

VI. ON THE OPTIMALITY OF THE PARAMETERS CHOICE

We now take a closer look at the parameters. Specifically, we show
that the parameters chosen in Section IV-C2, which give good but sub
optimal rate and alphabet size w.r.t. the non explicit construction, are
the best possible in the above construction:

Lemma 5: In the construction given in Section IV, for any choice
of parameters satisfying error rate of 1� � and strictly positive rate, it
must be that � = 
(2log ( )), and r = O( �

log( )
).

Proof: Having an error rate of 1� �, the min-entropy of the dis-
perser must be �L. Thus, by (14) T = 
(log(1

�
)). The construction

constraint M > LT

D
= �

�
implies that M = 
( 1

�
). Finally, having

rate strictly bigger that zero, implies D = O(logN). Altogether, we
get

M
T = 
(2log ( )) (28)

and

r =
logN

D logM

�

�G
= O

�

log 1
�

: (29)
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A New Bound for the Minimum Distance of a Cyclic Code
From Its Defining Set

Emanuele Betti and Massimiliano Sala

Abstract—A new lower bound for the distance of cyclic codes is pro-
posed. This bound depends on the defining set of the code, like several
other bounds. The proposed bound improves upon the Bose–Chaud-
huri–Hocquehghen (BCH) bound and, for some codes, improves upon the
Hartmann–Tzeng bound and the Roos bound as well.

Index Terms—Bose–Chaudhuri–Hocquehghen (BCH) bound, cyclic
codes, Hamming distance, Hartmann–Tzeng bound, Roos bound.

I. INTRODUCTION

Many lower bounds exist for the distance of cyclic codes, among
others the Bose–Chaudhuri–Hocquehghen (BCH), Hartmann–Tzeng,
and Roos bounds (see [1]–[5]). They are usually based on patterns in
the complete defining set of the code. We present a similar bound,
which is based on a pattern which has never been noted before. The
proof is quite technical and relies on a method proposed by Ponchio
and Sala in [6]. We will give a brief description of their method, which
is called “single procedure” in [6]. Our lower bound is stronger than the
BCH bound, but its relation with other classical bounds is not clear: for
some codes it performs better than the Roos and the Hartmann–Tzeng
bounds, while for others it performs worse.
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