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Abstract

Many electronic voting schemes assume the user
votes with some computing device. This raises
the question whether a voter can trust the de-
vice he is using. Three years ago, Chaum, and
independently Neff, proposed what we call bare-
handed electronic voting, where voters do not
need any computational power. Their scheme
has a very strong unforgeability guarantee. The
price for that, however, is that they require the
voter to tell his vote to the voting booth.

In this paper we propose a scheme where the
voter votes bare-handedly, and still maintains his
privacy even with respect to the voting booth.
We do this by allowing the voter the use of a
computer device but only at a pre-processing
stage - the voting itself is done bare-handedly.
This has many advantages. A voter who has
to verify calculations at the booth has to trust
the software he is using, while a voter who veri-
fies pre-processed calculations can do that at his
own time, getting help from whatever parties he
trusts.

Achieving private, coercion-resistance, bare-
handed voting with pre-processing is a non-
trivial task and we achieve that only for elections
with a bounded number of candidates. Our solu-
tion works by proposing an extension to known
voting schemes. We show that such extended
schemes enjoy the same unforgeability guaran-
tee as that of Chaum and Neff. In addition, our
extended scheme is private, and the voter does
not reveal his vote to the booth.

KEYWORDS: electronic voting, receipt freeness,
coercion resistance, universal verifiability.

1 Introduction

There are several basic properties required from
an electronic voting protocol. A voting scheme
has to be unforgeable, i.e., even a coalition
of (computationally unbounded) adversaries can
not forge the voting results. Also, it has to be
private, meaning that an adversary can not learn
how a specific voter voted. Another more sub-
tle property is that of coercion-resistance which
basically means that a voter can deny his vote.
Finally, we would like the system to be auditable
(also called verifiable), meaning that all actions
taken during the election are written down on a
public board open for inspection and verification
by everyone.

There are many proposals for electronic vot-
ing schemes. Many of these schemes require that
the voter uses computational power in the booth.
The underlying assumption is that honest voters
can control the algorithm they run. However,
we can (and should) question this assumption.
Viruses and spy-ware are a common reality to-
day. How can one be sure that the algorithm one
runs is indeed the intended one?

This led David Chaum [Cha04], and indepen-
dently Andrew Neff [Nef04], to suggest the no-
tion of what we term as bare-handed voting. The
idea is that the voter comes to the voting booth
without any computational power and manu-
ally verifies that his vote is properly processed
(e.g., using his eyes and visual cryptography in
Chaum’s scheme). A very appealing aspect of
this approach is that the auditors (and anyone
can be an auditor) can verify the validity of the
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elections in real time. As a result the system is
truly unforgeable.

One way to view Chaum’s and Neff’s algo-
rithms is that the voter delegates his computa-
tions to the voting booth, and his only role is to
check his vote is correctly registered. The price
of this approach is that the voting booth knows
what each voter voted. Thus, in terms of pri-
vacy, the system is less satisfactory. For exam-
ple, a government can easily find out what each
citizen voted.

Recent schemes (e.g., [CRS05, LTR+06,
AR06, Cha07]) use paper based voting where the
paper ballots can be prepared in advance by one
or more authorities. For example, in [Cha07] one
authority prepares the ballots, in [CRS05] one
authority prepares the ballots, but the ballots
are encrypted with a cascade mixing using the
public keys of several parties, and in [LTR+06]
the encryption is distributed.

It is important to understand that there is
no privacy towards the party (parties) that pre-
pare the ballots. The above schemes transfer the
point of failure. In [Cha04] we trust the booth
and in the above schemes we have to trust the
party that prepares the ballots. For example, if
the government prepares the ballot then there is
no privacy towards the government.

Moreover, even if we trust the parties who
prepare (and encrypt) the ballots, there is still
a severe privacy problem with existing schemes.
Suppose some party A can watch the encrypted
ballots before they are being used. Then, that
party knows the matching between candidates
and encryptions (that appears on the ballots).
After a ballot is used, the published information
on the public board contains the voter name and
an encrypted value, and therefore party A knows
exactly what the voter voted. This problem is
the reason why a distributed encryption does not
guarantee privacy against the ballot creators.

Thus, current schemes we aware of, either re-
quire some computational power from the voter
at the booth, and then in return give the voter
full privacy, or do not require computational
power from the voter at the booth, but as a result
the voter loses his privacy against the party that
prepared the ballot. In this paper we show how

to maintain privacy (even against the govern-
ment) without requiring the voter to have com-
putational power at the booth. We do that by
letting the voter prepare the ballot himself. This
raises several problems which we discuss now.

1.1 Bare-handed voting with pre-
processing

In this paper we consider bare-handed vot-
ing with pre-processing. In our model, voters
need computational power but only at a pre-
processing stage. They later on come to the vot-
ing booth (with the pre-processed papers) and
vote bare-handedly. The pre-processing stage re-
sembles preparing paper ballots in current man-
ual elections. Any user can prepare any num-
ber of pre-processed ballots in the pre-processing
stage. He can also choose to test the ballots or
any (random) subset of them. Subsequently, the
voter comes equipped with the pre-prepared bal-
lots to the voting booth and manually votes. In
the booth we require only simple human abili-
ties such as: reading and the ability to compare
strings.

In our scheme the voter prepares the ballots at
home. This has a privacy advantage, but poten-
tially makes the scheme coercible. Never the less,
our protocol supplies a strong guarantee against
coercion. We assume a powerful coercer that can
give coerced ballots to the voter, and make sure
the voter has no other ballots with him. We show
that if a coercer can coerce a voter, then the co-
ercion is detected with a good probability. This,
in particular, implies that a coercer can not co-
erce many people to vote without being detected.
We describe how this is done in Section 4.1.

One might ask why the use of a computer out-
side the booth is safer then the use of a computer
device inside the booth (e.g., [BFP+01]). How-
ever, note that the voter has no way to check how
his device functions inside the booth. Moreover,
he can be coerced to use a malicious device. In
contrast, a voter has a choice how to prepare his
pre-processed ballots: he can download an open-
source software, program such a software himself
or use a public web-site (or his favorite candidate
web site) for that. Furthermore, he can create as

2



many ballots as he wishes, and therefore he can
choose a subset of the created ballots and check
its validity.

We give an intuitive discussion of the problem
and our solution in Section 4.1.

2 The participants, required
properties and the attack
model

We have voters, voting booths, trustees and au-
ditors. As with many other schemes we have a
public board which is a reliable database accessi-
ble by everyone. The auditors have access only
to this public board and constantly check its in-
tegrity (data is only added to the database, old
data does not change, everyone gets to see the
same picture) and its contents (proofs are cor-
rect etc.). Everyone can be an auditor. One
may think of this public board as an Internet
site where all data is accumulated, and where
its reliability stems from the fact that it is under
constant public inspection. The assumption that
such a public board can be maintained is made
in many previous works (e.g., [HS00, Cha04]).

Some very basic requirements from an elec-
tronic voting scheme (stated in a very informal
way) are:

Unforgeability - No one can falsify the result
of the voting.

Eligibility, Unreusability - Respectively re-
quires that only eligible voters vote and no
voter can vote twice.

Auditability, Universal auditability - The
first describes the ability of any individual
voter to determine whether or not his vote
has been correctly placed. The second cor-
responds to the ability of any auditor to
determine that the whole protocol was fol-
lowed correctly, given that votes had been
correctly placed.

Robustness - Dishonest participants can not
disrupt the voting. In particular cheating
players should be detected and it should be
possible to prove their malicious behavior
and finish the voting process without their

help.
Privacy - No one can link a voter with his vote.
Receipt-freeness, Coercion resistance -

The notion of receipt freeness was intro-
duced by Benaloh and Tuinstra [BT94],
and it means that the voter can not prove
to which candidate he voted. This notion
can be generalized in several ways. The
strongest one, usually called coercion
resistance, avoids even scenarios where
the voter cooperates with the coercer, and
they both try to find a strategy where
the voter can prove that he followed the
coercer instructions (e.g., they can choose
specific private keys and a strategy such
that the voter can prove that he voted a
specific value or a random value). A formal
definition was given in Juels, Catalano and
Jakobsson [JCJ05].

For unforgeability, auditability and universal
auditability, we assume the malicious party in-
cludes any subset of malicious voters, the voting
booth and all of the trustees. We assume the
malicious party is computationally unbounded.
The requirement is that if the malicious party
changed the vote of t honest voters then it is
caught cheating with probability at least 1 −
2−Ω(t).

There are many ways to define privacy, the
most appropriate one is probably saying that
the information the adversary holds is compu-
tationally close to a distribution that has very
low mutual information with the actual mapping
between voters and votes, and this should hold
even if there is some a-priori knowledge on voting
patterns. Such a definition protects not only in-
dividuals but also groups of persons (e.g., it will
not leak information on the way a certain minor-
ity group voted). In any case, we inherit the pri-
vacy guarantee that we get from the underlying
scheme that we use. For privacy, we restrict our-
selves to computationally bounded adversaries.
We allow the adversary to consist of a coalition
of the voters, the booth and some of the trustees
(the exact number of trustees depends on the
underlying scheme).

Finally, for coercion resistance, the adversary
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is computationally bounded. We allow the coali-
tion of malicious players to include the voters,
the coercer and some trustees (again, depend-
ing on the underlying scheme). We assume the
booth does not cooperate with this attack.1 We
also need to use what we call a recordable pri-
vate channel between the voter and the booth.
A recordable private channel between two par-
ties A and B is an untappable channel between
A and B that has the following two properties:
First, at the request of one of the players, the
channel can be examined by an auditor (this is
the reason we call the channel recordable), and,
second, at the end of the conversation, if the two
parties agree, the recording is erased and lost.

The first property is important for robustness,
and the second for coercion resistance. This
assumption requires some physical implementa-
tion, e.g., a printer printing the transcript be-
tween the two parties, where later on the print-
out is shredded. Similar definitions appear in
previous works in the area. In Sako and Kil-
ian [SK95] the channel is defined to have the
second property only (and indeed no robustness
is supplied), in Chaum’s visual scheme proposal
[Cha04] he assumes parts of the transcript can
be shredded. We discuss this in more detail in
Section 5.

3 Previous work

Unforgeability is usually easy to achieve. Privacy
is also easy, but only against passive adversaries,
e.g., in a scenario where dishonest votes are in-
dependent of honest votes. If we allow active ad-
versaries, e.g., if dishonest players can vote based
on what they see so far on the public board, then
privacy is sometimes not guaranteed [Pfi94].

Coercion resistance and even receipt freeness
are usually more difficult to achieve. Benaloh
and Tuinstra proposed a receipt free scheme
which was later broken [Hir01]. Sako and Kilian

1In manual elections there are voting booths that phys-
ically isolate the voter for privacy and coercion resistance.
The same is true for electronic elections as well. All
schemes that we are aware of guarantee privacy and co-
ercion resistance assuming some trust in the system.

[SK95] proposed a receipt free scheme using mix-
networks and Chameleon blobs but their scheme
requires the voter to know at least one mix which
is honest (rather than just knowing that one
such mix exists). [HS00] proposed a similar but
more efficient solution using threshold encryp-
tion, but it has the same drawback. Moreover,
both schemes can be coerced.2 [MBC01] pro-
posed a solution which uses a tamper resistant
smart-card that produces a random value hidden
from the voter, and [BFP+01] proposed a solu-
tion which requires an authority used for ran-
domness (similar to the role of the booth in our
solution).

Bare-handed protocols started with the
ground-breaking work of Chaum and Neff
[Cha04, Nef04]. Many other schemes followed
(e.g., [CRS05, Rey05, LTR+06], and the more
recent [Cha07, AR06, MN06]). We mention that
in many of these schemes there is no privacy to-
wards the booth (and the voter simply tells his
vote to the booth), and in many of these schemes
privacy towards a malicious ballot creator is lost,
see the discussion in the introduction.

We use the [CGS97] scheme (using threshold
encryption for tallying) or the [SK95] scheme
(using mix networks for tallying) as our underly-
ing schemes. One nice feature of these schemes
is that they have two separate phases: one for
casting votes and one for tallying, casting a vote
ends with a published encrypted vote that can
not be opened by unauthorized parties. Also,
both schemes use ElGamal encryption (described
in Appendix A). The immediate benefit of using
ElGamal is its homomorphic property, meaning
E(m0, r0) ·E(m1, r1) = E(m0 ·m1, r0 +r1) where
E(m, r) is an encryption of m using a random-
ness r.

4 A Bare-Handed Extension

4.1 An intuitive discussion

Let us summarize the situation so far. Some-
one has to prepare the encrypted vote. If the

2A coercer can force the voter to vote randomly and
verify his behavior.
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voter prepares it at home, then we are suscep-
tible to attacks on receipt freeness (because the
voter can open his vote) and coercion-resistance
(because the voter can be given the vote by the
coercer). If, on the other hand, we ask the booth
to encrypt the vote (as in Chaum’s and Neff’s
schemes) we lose privacy.

We could also go a middle way: ask the voter
to prepare the encrypted ballot, and then let the
booth re-encrypt it. However, in such a case,
the voter has to check the booth properly re-
encrypts his vote (e.g., to see that the booth is
not multiplying his vote with an encryption of a
value other than one) and we do not want the
voter to do computations at the booth. A sim-
ple solution might be to ask the booth to put
the re-encryption and the original vote at the
public board, and let the auditors check the cal-
culations, but then we are back to revealing the
original vote, and the coercion problems.

The key idea behind our solution is very sim-
ple. We borrowed it from the way paper-ballot
elections are currently carried out. In paper-
ballot elections, privacy and coercion resistance
are obtained by making sure that the voting
booth has paper ballots for each of the candi-
dates. In a similar way, we ask the voter to
prepare ballots with valid votes for all existing
candidates. For reasons we explain shortly, we
ask the voter to prepare two ballots. We also
ask him to give a proof that:
• All the votes he prepared are legal and en-

code an existing candidate.
• He prepared two ballots for each of the can-

didates, and he knows the correspondence
between the votes and the candidates.3

These proofs can be prepared in advance.
The booth role is to re-encrypt the ballot’s

votes (we call this ballot’s re-encryption), which
is necessary for coercion resistance. This, in
turn, forces us to check the booth. The voter
does this by randomly choosing for every can-
didate one of the two ballot’s re-encryptions for

3This is necessary because the coercer might give the
voter a set of valid ballots but without telling him which
encrypted ballot corresponds to which candidate. We
therefore ask the voter to show a poll-worker he can match
ballots with candidates.

testing the booth. The testing itself is done by
the auditors using the data that appears in the
public board. The voter then uses the other re-
encryption of his candidate for the actual voting.

Thus, in the first stage a poll-worker checks
the voter can associate votes with candidates,
and in the second phase the voter checks the
booth properly re-encrypts messages. A coercer
may potentially use both stages for coercion.
The way we bypass these problems is by forc-
ing both tests to apply to all candidates. If you
prove you can associate a vote to a candidate
you reveal information. But if you do that for
all candidates you reveal nothing.

The implementation details are important as
(not surprisingly) there are some subtle points
hiding. We mention two issues here:

• (Active attacks) The booth may cooperate
with another voter A′ to reveal A’s vote by
using the active attack of Pfitzmann [Pfi94].

• (A coercion attack) In the above protocol we
assumed the voter is free to choose his ran-
dom coin. However, a coercer might force
the voter, e.g., to use a random coin which
is a hash of B’s re-encryptions. This, some-
times, enables a coercion attack. Such an
attack also applies to [SK95] and [HS00].

Indeed, finding a working scheme requires del-
icate balancing. We begin with a formal state-
ment of the protocol, followed by an (informal)
proof of correctness.

4.2 A formal description of the voting
process

Pre-voting : Here is what a voter V does at
home. V prepares two ballots. Each ballot
is printed on both sides (back and front) and
contains records for each of the candidates.
We now describe how V prepares such a bal-
lot.
Say there are D candidates. For every
i = 1, . . . , D, V picks a random string
ri and prepares an encrypted vote yi =
E(mi; ri) for the i’th candidate mi (where
the specifics of this encoding function E de-
pends on the underlying scheme) along with
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a NIZKP that yi encrypts a legal candi-
date.4

On the front side, V prints D rows contain-
ing the D values yi in a random order. On
the back side, V prints D rows containing
the D tuples (mi, ri) using the same random
order. Also, on both sides, the voter’s name
(and a serial number if needed) appears in
plain-text. See figure 1.5

Figure 1: The ballot is printed on both sides. The
back side contains (in plain-text) the candidates’
names along with the random strings used for en-
crypting their corresponding votes. The front side
contains the encrypted votes E(mi; ri) along with a
NIZKP that those encrypted values are valid.

Voting (and verification) : V identifies him-
self with an ID. In front of a poll-worker
he shows (using a scanner for instance) the
front sides of his two ballots, and this is pub-
lished together with the voter name on the
public board for universal verification. The
booth B and the auditors check that the
non-interactive, zero knowledge proofs are
correct and all the votes on the front sides
of the two ballots are legal.
A poll-worker picks a random number i ∈
{1, 2} and publishes i on the public board.
The poll-worker asks the voter to scan the
back side of the i’th ballot, and it is sent
to the public board. The booth and the
auditors check that the back side matches

4Such non-interactive, zero knowledge proofs are de-
scribed in Appendix B.

5Another subtle point is the following. A coercer might
supply the voter with legal ballots whose back side is cov-
ered with a scratch area, and tell the voter to vote with a
non-scratched ballot. The voter is able to show the back
side of the test ballot (by first scratching it) but must
keep the other ballot covered, effectively enforcing a ran-
dom vote [Ano07]. We solve this problem by testing the
voter in front of a poll-worker.

the front side (this guarantees that the voter
knows how to open his ballots). We denote
by P the remaining ballot. The voter now
enters the booth.

Casting a vote : Say the voter V wants to vote
for the candidate that appears on the c’th
row of P , c ∈ {1, .., D}. Then, V sends
B the number c over the recordable private
channel. The value c is not posted on the
public board.

Re-encryption (and verification) : Say the
front side of P has the D values
{e1, . . . , eD}. B computes two re-
encryptions of the front side of P , i.e., two
sets P (0) =

{
e
(0)
1 , . . . , e

(0)
D

}
and P (1) ={

e
(1)
1 , . . . , e

(1)
D

}
, where e

(0)
i and e

(1)
i are ob-

tained by multiplying ei with a random en-
cryption E(1;U) of 1. Then the booth picks
two random permutations π0, π1 ∈ SD and
publishes π0(P (0)) and π1(P (1)) on the pub-
lic board, where π(P ) is the set P with the
D rows of P permuted according to π. The
booth also publishes on the public board a
NIZKP that all rows in π0(P (0)) ∪ π1(P (1))
are re-encryptions of some vote given in P .
Finally, the booth also tells the voter, over
the recordable private channel, the values
c0 = π0(c) and c1 = π1(c).
The voter publishes a bit b ∈ {0, 1} and
the booth reveals Πb on the public board
(and if the booth is honest then Πb = πb),
along with the randomness used to create
the re-encryptions in P (b). The auditors
check correctness and the voter checks that
Πb(c) = cb, i.e., that the booth’s permu-
tation is consistent with the ordering the
booth declared to the voter.

Publishing a vote : The booth publishes cb
over the public board and the vote is taken
to be P

(b)
c
b

. The voter V checks that the
published value matches cb that was sent to
him over the recordable private channel. If
everything so far is correct, V and B shred
the channel’s record (and in particular they
shred c) and V leaves the booth.

This completes the voting stage. The tally-
ing stage is done as in the original, underlying
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scheme.6 Notice that the voter can pre-compute
the votes (and the non-interactive proofs) in the
ballots, and can come to vote at the booth bare-
handed, carrying only his two ballots of votes.

4.3 Informal proof of correctness

4.3.1 Coercion resistance

We assume a coercer prepared the voter’s two
ballots and directed him to act in a specific way.
We first notice that -

Claim 1 If one of the paper ballots the voter
prepares is not legal the voter is caught with prob-
ability close to one. Also, if one of the two bal-
lots the voter prepares does not contain a vote
for each candidate, or, if the voter can not match
the corresponding back and front parts of a bal-
lot, then the voter is caught with probability close
to half.

One can argue that probability one half is
not small enough. However, notice that this
means that if a coercer tries to coerce t people,
then with high probability (except for probabil-
ity 2−Ω(t)), about t/2 of them will be caught, and
so with high probability the coercer himself will
be detected.7

If the voter holds a valid vote for each candi-
date, and he can associate encryptions with can-
didates, he can, in particular, vote to any can-
didate he likes. In the rest of this subsection we
show he can not prove to the coercer what choice
he had made. After the voter leaves the booth,
the private channel transcripts are shredded. An
outsider only sees the published information on
the public board which contains the voter’s se-
lected bit b, the published re-encrypted vote and
one set of re-encryptions which is opened in full
(and so is independent of the value c). In fact,

6We mention that if we take the underlying scheme to
be [CGS97] (using threshold encryption) then some of the
NIZKP we use already appear in the original scheme and
so they should be combined.

7Another direction one might be tempted to take, is
to ask the voter to come with J +1 ballots and to use J of
them for verification. The error probability then becomes

1
J+1

, and so goes down only linearly in the number of
ballots.

the third item can be efficiently simulated, and so
does not add any information. The first item, the
selected bit, can be chosen in any way the coercer
directed. The second item, the re-encryption of
the actual vote, is an ElGamal re-encryption of
one out of k votes and using randomness and
keys that the coercer (and the voter) does not
have. Thus, this re-encryption is computation-
ally indistinguishable from re-encryption of any
of the other votes. In particular, the voter can
claim he sent any c and the coercer will accept
with the same probability.

4.3.2 The other requirements

The proof of the other requirements is similar to
preceding schemes and we omit it, and we only
consider the bare-handedness property. We look
at the voter’s actions in the booth. The voter
gives the front sides of the two ballots and the
back side of the selected ballot. The voter then
picks his vote c by looking at the back side of his
remaining ballot and choosing the row number
of the candidate he supports. Then the voter
selects a random bit. Finally, the voter has to
compare two integers (each between 1 and D)
for checking the booth. We believe all of this
can be done by humans without the help of a
computing device.

One comment is in place. We (and most of the
other works in the area) assume the existence of
NIZKP. Indeed, if OWF exist, and if the parties
have access to a source of shared randomness,
every language in NP has a NIZKP [FLS90].
However, the NIZKP obtained using such tech-
niques has some large polynomial complexity,
and is impractical. Also, one should question
this common source of randomness. Another
way to go is to use the Fiat-Shamir heuristics
[FS86], but then we can not claim anything for-
mal about unforgeability against unbounded ad-
versaries.
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5 A practical version using
shredding

In our protocol we require two physical devices:
a public board and a recordable private com-
munication channel. These assumptions are not
easy to implement. We further modify the proto-
col, simplifying the interaction between the voter
and the booth with the goal of demanding less
from the recordable private channel. Our mod-
ification is similar to ideas used in Prêt à voter
scheme [CRS05] and in the recent Scratch and
Vote scheme [AR06].

The modification is as follows: The protocol
begins as before. The voter prepares two ballots,
one is tested, and the remaining ballot P is used
for the actual voting. The booth then prepares,
as before, two re-encryptions P (0) and P (1) of
P . Here we deviate from the previous protocol.
The booth prints a ballot with two columns. The
j’th row of the ballot consists of P

(0)
j in the left

column and P
(1)
j in the right column (along with

a NIZKP that the re-encryption is legal). The
order of the rows in the re-encryptions P (0) and
P (1) is the same as the order of P . Also, the
values in each column are signed by the booth
and covered with a scratch surface (see Figure 2).
Next, we do the following:

Figure 2: 1. The two column are covered. 2. The
voter selects a column b, tears his vote and scratches
it. 3. The test column is scratched in front of the
poll worker. The vote and the test column are sent
to the public board. All the rest is shredded.

• The voter picks b ∈ {0, 1} at random,
scratches off the row of his candidate from
this column (recall, that this is determined
by the row of the candidate in the back side
of P ) and publishes it as his vote.8

8If we assume the communication with the poll-worker
is public, then the voter also separates all the rows of his
chosen column. He does that in order to hide his chosen
row from outsiders.

• The voter surrenders the other unscratched
pieces to the poll-worker. He shows the poll-
worker that only one piece (that of his can-
didate) is scratched.9

• The remaining pieces of column b are shred-
ded. Also, the voter (or the poll-worker)
scratches off the other column. He publishes
it and takes it home as a receipt. The booth
reveals the randomness used to create the
re-encryptions in this column, and the au-
ditors check correctness.

One problem that exists with this protocol is
that we can not settle disputes. Consider for ex-
ample the scenario where the auditors discover
the information in the scanned column is in-
consistent with the data the booth publishes,
and the booth claims the voter did not scan
the information the booth sent him. The pro-
tocol supplies no way of determining whether
the voter is honest and the booth is dishonest
or vice versa. This problem implicitly appears
in all previous protocols (and in particular in
[CRS05] and [AR06]) and is a reflection of the
fact that the channel that we use is not private,
recordable channel. There are several pragmatic
suggestions how to solve this problem (e.g., the
booth prints its data on a special paper).

The protocol is similar to the one described
in Section 4 but what we gain here is simpler
interaction. Other than the problem discussed
above (which is common to other protocols in
the area) the protocol enjoys the same properties
as the one in Section 4. We omit the proof for
lack of space. Thus, our protocol is as practical
as the other protocols in the field, while enjoying
true privacy even with respect to the booth.

We remark that many of our computations
require long random numbers. As in [AR06],
we can reduce the ballot’s size by replacing the
long random numbers with much shorter random
numbers, using these shorter numbers as seeds of
a pseudo random generator. Also, bar-codes can
be used to encode long strings.

9The reason the voter has to show a poll-worker that
all other rows are still covered is to avoid vote-buying.
Otherwise, a voter can be paid for voting with an en-
crypted value that starts, say, with a specific sequence,
effectively forcing a random vote.
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A ElGamal encryption

We use ElGamal encryption over a multiplica-
tive group of prime order, as suggested by [Pfi94,
SK95]. Specifically, we first publicly choose two
large primes q′ and q such that q|q′−1. Let k be
the integer such that q′ = qk + 1. We also fix a
generator g′ of F ∗

q′ . The cyclic group G we work
with is the one generated by g = (g′)k and its
order is q′−1

k = q.
The public key then includes (other than

q′, q, g) a value y ∈ G. The private key is x ∈ G
such that y = gx. To encrypt a message m ∈ G
(given the public keys q′, q, g, y), we choose uni-
formly at random r ∈R [1..q − 1] and output
E(q′, q, g,m, y; r) = (gr, yr · m). To decrypt a
message (α, β) we compute m = β · α−x.

As we work with global values q′, q, g and
y shared by all participants, we abbreviate
E(q′, q, g,m, y; r) to E(m; r). ElGamal is homo-
morphic, namely E(m1; r1) ·E(m2; r2) = E(m1 ·
m2; r1 + r2).

B Reviewing some zero-
knowledge proofs

B.1 (Non-interactive) Zero knowledge
proofs

Assuming OWF and a shared source of random-
ness, every problem in NP has a non-interactive
proof system. However, these proofs have
high (polynomial) complexity [FLS90], and even
worse, we do not have a trusted shared source
of randomness. In practice, we take a three
round interactive proof and convert it to a non-
interactive proof using the Fiat-Shamir heuris-
tics [FS86] (changing the challenge to be the hash
of the transcript preceding the challenge). We
use the next three interactive proofs: equality of
discrete logarithms from [CP92], one-out-of-` re-
encryption and one-out-of-` message encryption,
both from [CGS97, CDS94]. For completeness,
we soon describe them. We mention that both
the interactive and non-interactive protocols are
coercible if the transcripts are public (we demon-
strate this soon).

B.2 Zero-knowledge proof of equality
of discrete logarithms

Let G be a multiplicative group of order q, and
let g1, g2 be two (possibly different) generators
of G. The input is v, w ∈ G. The prover knows
discrete logarithms of v and w, i.e., x1 and x2

such that v = g1
x1 , w = g2

x2 , and claims they
are the same, logg1

v = logg2
w.

The following protocol is from [CP92]:

• The prover chooses z ∈ [2..q] at random and
sends a = gz

1 , b = gz
2 to Bob.

• The verifier chooses a challenge c ∈ [2..q] at
random and sends it to the prover.

• The prover sends r = (z + cx) (mod q) to
Bob.

• The verifier checks that gr
1 = avc and gr

2 =
bwc.

The protocol is a honest verifier, perfect, sta-
tistical zero knowledge, with perfect complete-
ness and 1/q soundness error. It is not known to
be zero knowledge against dishonest verifiers.

It also, three round public coin, so the proof
can be turned non-interactive, by using the Fiat-
Shamir heuristic, changing the challenge c with
the hash of a, b, v, w.

B.3 A Zero knowledge proof for 1-out-
of-` re-encryption

We use the same notation as before - we let
G be the multiplicative group as before and fix
some g, h ∈ G. Now, the prover wants to prove
that for a publicly known pair (x, y) there is
an ElGamal re-encryption10 in the ` encrypted
pairs (x1, y1), . . . , (x`, y`). We assume the re-
encrypted pair is (xt, yt) = (x, y) · E(1; r) =
(xgr, yhr), where r is a random secret value
known only to the prover. The protocol is de-
scribed in Figure 3. It is taken from [CGS97].

Using the Fiat-Shamir heuristics, the protocol
can be made non-interactive using the challenge
c = H(a, b, x, y, x1 · · ·xL, y1, · · · , yL). The prover
publishes c, d, r and the verifier is the same as
before.

10We say a pair (a′, b′) is a re-encryption of (a, b) if
(a′, b′) = (a, b) · E(1; r) for some value r.
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Prover Verifier

ri, di ∈R [2..q], w = r · dt + rt

ai = (xi
x

)digri , bi = ( yi
y

)dihri < a >, < b >
-

c ∈R G
c

�dt = c−
∑
j 6=t

dj

rt = w − r · dt

< d >, < r > -
Verify -

c =
∑

di

ai = (xi
x

)digri , bi = ( yi
y

)dihri

Figure 3: Re-encryption of 1-out-of-` interactive proof. The input is: G, g, h ∈ G,
(x1, y1), . . . , (x`, y`) and (x, y) = (xt, yt) ·E(1; r). a denotes the vector a = (a1, . . . , a`) and similarly
b, d, r

Re-encryption is a symmetric property (if
(a′, b′) is a re-encryption of (a, b), then (a, b) is
a re-encryption of (a′, b′) 11). In particular, the
above is also a ZKP for the case where we are
given (x, y) and we want to prove it is a re-
encryption of one out of the ` pairs (xi, yi).

B.4 A Zero knowledge proof for 1-out-
of-` message encryption

We now look at the following problem: we are
given ` plain-text messages m1, . . . ,m` and one
encryption (x, y) and we want to prove it en-
crypts one of the ` plain-text messages. The pro-
tocol for that is given in [CGS97] and is based on
the 1-out-of-` re-encryption, and we give it here
for completeness.

Given m1, . . . ,m` and (x, y) = E(mt; r) (for
some t and r known only to the prover), the
prover publishes (xi, yi) = (x, ym−1

i ). It is easy
to check that (xi, yi) = E(mtm

−1
i ; r). The prover

now proves that one of (xi, yi) is a re-encryption
of E(1; 1) using the ZKP from previous subsec-
tion.

11This is because E(1; r)−1 = E(1;−r).

B.5 Coercion in zero-knowledge pro-
tocols

We mention that both the interactive and non-
interactive protocols are coercible if the tran-
scripts are public. e.g., during the interactive
protocol of Zero-knowledge proof of equality of
discrete logarithms the prover commits to z (us-
ing gz

1). If the transcripts are public, a coercer
can coerce the prover to reveal z (which can be
done in only one way) and using this he can cal-
culate x = (r − z)/c. In the non-interactive pro-
tocol this coercion is done using the hash func-
tion and z.

11


