
SIAM J. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 664–677

SHORT SEED EXTRACTORS AGAINST QUANTUM STORAGE∗

AMNON TA-SHMA†

Abstract. In this paper we show that a construction of Trevisan, solving the privacy amplifica-
tion problem in the classical setting, also solves the problem when the adversary may keep quantum
storage, thereby giving the first such construction with logarithmic seed length. The technique we
use is a combination of Trevisan’s approach of constructing an extractor from a black-box pseudo-
random generator, together with locally list-decodable codes and previous work done on quantum
random access codes.

Key words. extractors, quantum storage, random access codes, list-decodable code

AMS subject classification. 68Q12

DOI. 10.1137/09076787X

1. Introduction. In the privacy amplification problem, Alice and Bob share
information that is only partially secret with respect to an eavesdropper Charlie. A
typical example is the following. Alice holds a string x chosen uniformly from {0, 1}n
and sends it to Bob. Charlie listens on the line and keeps a state ρx depending on
x, where the only limitation imposed on Charlie is that he may keep at most b bits
(or qubits in the quantum setting) of memory. Alice and Bob’s goal is to distill this
information to a shorter string that is completely secret even toward Charlie.

The problem was introduced in the classical setting (i.e., considering a classical
adversary Charlie) in [5, 4]. In the classical setting the problem can be solved almost
optimally with the help of a shared, public random string. Formally, Alice and Bob
use a probabilistic hash function E : {0, 1}n × {0, 1}t → {0, 1}m that takes as input
the partially secret input x ∈ {0, 1}n and a public random string y ∈ {0, 1}t (called
the seed) and hashes the input (that is partially known to Charlie) to a shorter string
E(x, y) that looks almost uniform to Charlie. Such a function E is called an extractor.
The goal is to explicitly construct extractors with a large output length and a short
seed length, and many good constructions are known today.

A major open problem that was first formally stated in König, Maurer, and
Renner’s work [19, 20] is whether the privacy amplification problem can be solved in
the presence of a quantum adversary Charlie. This quantum variant of the problem
naturally occurs in analyzing the security of some quantum key distribution protocols
and in quantum bounded-storage cryptography. See, e.g., [6, 21, 22].

In the quantum setting we can distinguish between two types of information
the quantum adversary may hold about the partially secret string x. First, it may
hold some classical data about x, and this can be captured as saying that from the
adversary’s point of view the input is drawn from some distribution X on {0, 1}n.
The optimal amount of entropy we may hope to extract is upper-bounded by the
min-entropy of X . Second, the adversary may also hold some quantum information
about the source by keeping a b-qubit state ρ(x) correlated with x. We say E :
{0, 1}n × {0, 1}t → {0, 1}m is a (k, b, ε) extractor against quantum storage if for any

∗Received by the editors August 11, 2009; accepted for publication (in revised form) March 18,
2011; published electronically June 2, 2011. This work was supported by EU grant QCS and by Israel
Science Foundation grant 1090/10. A preliminary version of the paper appeared in STOC 2009.

http://www.siam.org/journals/sicomp/40-3/76787.html
†Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel (amnon@tau.ac.il).

664

SHORT SEED EXTRACTORS AGAINST QUANTUM STORAGE 665

distributionX on {0, 1}n with min-entropy k, and any b qubit state ρ(x) the adversary
holds, the output distribution E(X,Ut) is close to uniform. See Definition 2.2 for the
precise details.

One could hope for a generic result showing that every extractor against classical
storage is also good against quantum storage. Indeed, König and Terhal [22] showed
that any extractor with a single-bit output that works well in the classical setting is
also good against quantum storage with slightly worse parameters. They also showed
that any extractor that has error ε in the classical setting has at most 2O(b)ε error
against adversaries with b quantum bits of storage. On the negative side, Gavinsky
et al. [13] showed an example of an extractor that works well against classical storage
but fails against quantum storage. Thus, no generic result is possible, or at the very
least, any such generic result must involve penalties in some parameters.

There are several works showing that specific extractor constructions that work
well in the classical setting also work well against quantum storage. The first such
construction was given by König, Maurer, and Renner [19, 20], who showed that the
pairwise independent extractor of [17] is also good (and with the same parameters)
against quantum storage. Using the same techniques the result can be extended to
using almost pairwise independence [29]. Fehr and Schaffner [12] show that another
classical extractor for very high min-entropies is good against quantum storage (the
classical version appears, e.g., in [9]).

Yet, in spite of much effort, all the methods above require seed length that is at
least min {Ω(m),Ω(b)}, where m is the extractor’s output length and b is the bound
on the quantum storage. In contrast, classically, there are many explicit constructions
with poly(logn) seed length (where n is the extractor’s input length), some even with
logarithmic seed length. Some of these constructions are summarized in Table 1.1. A
natural question that repeatedly appears in the above-mentioned papers is whether
one can show a logarithmic seed length extractor against quantum storage.

In this work we show that a celebrated extractor construction due to Trevisan [31]
is also good against quantum storage, with somewhat weaker parameters. Namely,
we have the following theorem.

Theorem 1.1. There exists a constant c such that for every α > β > 0, γ < α−β
c ,

k = nα, b = nβ, ε ≥ n−γ , m = O(ε
logn (

k
b)

1/c), and every large enough n, there exists

an explicit (k, b, ε) strong extractor E : {0, 1}n × {0, 1}t → {0, 1}m against quantum
storage, with seed length t = O(log n).1

In Theorem 1.1 we use the convention that n is a free parameter, tending to
infinity, and that the other parameters depend on n. That is, for every n, there

exists a function En : {0, 1}n × {0, 1}t(n) → {0, 1}m(n) that is a (k(n), b(n), ε(n))
strong extractor against quantum storage. The construction is explicit if there exists
a polynomial time algorithm that given x ∈ {0, 1}n and y ∈ {0, 1}t outputs E(x, y).

The seed length in the construction of Theorem 1.1 is O(log n), and as such
the construction gives the first solution to the privacy amplification problem against
quantum storage with logarithmic seed length. There is a well-known lower bound
showing that even extractors against classical storage require Ω(logn) seed length,
and so the construction is optimal up to multiplicative factors with respect to the
seed length.

There are, however, other aspects of the construction that are far from being
optimal, with the following three major deficiencies:

1The constant c we currently achieve is c = 15.

666 AMNON TA-SHMA

Table 1.1

Several explicit strong (k, b, ε) extractors against adversaries with b-bit classical storage and the
proven parameters of these schemes against quantum storage. To simplify the parameters, the error
ε is a constant and k = n. The last row gives information about the classical lower bound; it is
possible that a better lower bound applies for extractors against quantum storage.

No. of truly No. of Against classical storage Against quantum storage
random bits output bits

O(n) m = n − b − O(1) Pair-wise independence [17] � [19]
Θ(m) m ≤ n − b − O(1) Almost pair-wise ind. [29, 14] �, based on [19]
O(b + log n) m = n − b − O(1) Fourier analysis, collision [9] � [12]

O(log2 n
log(n−b)

) (n − b)1−ζ Designs [31] �, This paper. m ≈ ε(n−b
b)Ω(1)

� [8, 7]. m = (n − b)1−ζ

O(logn) m = Ω(n − b) [23, 15, 11] ?
O(logn) m = (1 − o(1))(n − b) [10] ?
logn + O(1) m = n − b − O(1) Nonexplicit construction [28] ?
logn + O(1) m = n − b − O(1) Lower bound [27, 28] �

• The number of output bits m depends multiplicatively on the error parameter
ε. This implies that the construction cannot handle small error parameters
and completely fails when, e.g., ε ≤ 1/k. This deficiency does not appear in
the classical analysis of Trevisan’s extractor, where the output length does
not depend on ε; it is (k − b− log ε−1)1−ζ for arbitrarily small ζ.
This deficiency is quite severe, as the error parameter is of crucial importance;
for example, in the bounded storage model we typically want to argue that
the adversary does not learn any nonnegligible amount of information about
the output, and for that we need extremely small error parameters.

• The number of output bits m is at most k
b . This implies that the construc-

tion gives poor results against quantum adversaries with b = Ω(k) quantum
storage. In contrast, in the classical analysis of Trevisan’s extractor, the term
k − b replaces the much inferior term k

b , and as a result the extractor works
well even against adversaries with Ω(k) classical storage.

• The last deficiency has to do with the output length. The classical analysis of
Trevisan’s extractor shows one can output (k−b− log ε−1)1−ζ output bits for
any constant ζ > 0. Our quantum analysis can, at the very best, guarantee
only k1/c output bits for some large constant c (c = 15 is large enough), and
so we have a polynomial loss here compared to the original classical scheme.

Following our work, De and Vidick [8] gave a better analysis of the performance
of Trevisan’s extractor against quantum adversaries, which was further simplified and
generalized by De et al. [7]. Their work shows Trevisan’s extractor is essentially
as good against quantum adversaries as against classical adversaries. Specifically,
the extractor can output (k − b − log ε−1)1−ζ bits for any arbitrarily small ζ < 1,
thus solving the above three deficiencies.2 Even more importantly, these results hold
against a more general model of quantum adversaries. We refer the interested readers
to [7] for more details.

Table 1.1 summarizes the parameters of several known explicit extractors against
classical storage and the proven parameters of these schemes against quantum storage.
Other classical techniques also adapt well to the quantum setting; see, e.g., [21, 3]. It is
our belief that more classical extractor constructions are also good against quantum
storage. We conjecture that there is a construction that is good against quantum

2We remark that De and Vidick declare only the inferior bound m =
(k−b−log ε−1)

kζ for any ζ > 0.

Also, the better bound is only implicitly stated in [7], because the results there are stated for a more
general model of adversaries.

SHORT SEED EXTRACTORS AGAINST QUANTUM STORAGE 667

adversaries and matches the parameters of the currently best-known classical extractor
construction, or even the parameters of the lower bound. It is our hope that the recent
chain of papers on the subject will eventually lead there.

Our technique. We begin the discussion with a short intuitive description of
the ideas behind Trevisan’s extractor.3 In a nutshell, the construction has two parts:

• The first observation is that good extractors with a single-bit output exist
and, in fact, are implied by the existence of good binary error correcting
codes.

• One can take m independent copies of an extractor with a single-bit output
and get an extractor outputting m bits. The price of this is that the seed
length becomes Ω(m). To fix this, in Trevisan’s extractor a short seed of
length O(log n) is used to create m sets that are pairwise nearly disjoint.
The analysis shows that in the classical setting the m nearly disjoint sets
can replace the m independent sets, resulting with m output bits but only
O(log n) seed length.

We now ask whether the above approach works in the presence of quantum ad-
versaries.

We already know the answer for the first item: König and Terhal [22] proved
that any extractor with a single-bit output is also good against quantum adversaries,
with only a small loss in parameters. The second item is trickier. As before, taking
m independent copies of an extractor with a single-bit output results in an extractor
that outputs m bits good against quantum storage (this was formally shown in [22]),
and, as before, the main drawback of this construction is that the seed length becomes
large. The main question is whether Trevisan’s derandomized version, using pairwise
nearly disjoint sets, also works against adversaries having quantum storage.

The analysis of Trevisan’s extractor uses the fact that it is built upon a recon-
structible pseudorandom generator (PRG). Loosely speaking, in such structures any
mechanism that breaks the extractor (i.e., distinguishes its output E(x, U) from uni-
form) can be used together with short advice to reconstruct its input x. At first sight,
this kind of reasoning looks very well suited to generalizations to extractors against
quantum storage. Assume Charlie can distinguish the extractor’s output E(x, U)
from uniform using b qubits of storage. Then, the reconstruction property tells us
we should be able to reconstruct x using Charlie’s reconstruction procedure, his b
qubits of information, and short advice of a classical bits. Thus, it seems we should
be able to reconstruct x ∈ {0, 1}n using only a+b qubits. Basic quantum information
theory tells us then that a+ b ≥ n, or, putting it differently, whenever b < n− a, the
extractor’s output is close to uniform.

A fundamental problem that arises in the quantum setting is that quantum advice
is fragile, and using it once degrades it. We tackle this problem by taking a variant of
Trevisan’s extractor where the binary error correcting code used for constructing the
extractor with the single-bit output is replaced with a locally list-decodable binary
code. The main advantage in this variant is that the number of queries the recon-
struction algorithm makes to the eavesdropper Charlie is small (poly-logarithmic in n
rather than linear in n as in Trevisan’s algorithm). As the number of queries q is
small, we can take as advice q copies of the system Charlie holds.

The price of this trick is that the reconstruction algorithm can now learn just
one bit of the input x, rather than the whole input x as in Trevisan’s extractor.

3We comment that the presentation here is somewhat different than that in [31].

668 AMNON TA-SHMA

The good thing, though, is that the reconstruction algorithm can learn any bit of
its choice. Thus, roughly speaking, if Charlie can break the extractor, then Charlie
holds a b-qubit encoding of x that lets him recover any single bit xi of his choosing.
A well-known result about random access codes [2] shows this is impossible unless
b is linear in n. In particular, if b is small enough, the extractor’s output is close to
uniform!

The actual analysis follows the above outline but is more involved, as it has to
deal with technical details and also some substantial difficulties (e.g., the fact that
the analysis requires random access codes of subsets).

The paper is organized as follows. In section 2 we define extractors against quan-
tum storage. In section 3 we discuss two structures that we need for the construction
and the analysis, namely, random access codes in section 3.1 and locally list-decodable
codes in section 3.2. Finally, in section 4 we analyze a variant of Trevisan’s extractor
and show that it is good against quantum storage.

2. Extractors against quantum storage. We now give formal definitions.
We assume familiarity with the basic notions of quantum computing (such as density
matrices), and we refer the interested reader to [25] and [18] for extensive background
on the subject. We also use the following notation: if φ is a (possibly entangled) state
over registers A and B, we write φ = φA ◦φB. In the special case where φ is a product
state over A and B, we write φ = φA⊗φB .

Definition 2.1. An (n, b) quantum encoding of some domain Λ is a collection
{ρ(x)}x∈Λ of density matrices ρ(x) over a Hilbert space of dimension 2b.

LetX be some classical distribution over {0, 1}n, and let px denote the probability
X assigns to x. Informally, an extractor is a function E : {0, 1}n × {0, 1}t → {0, 1}m
such that the extractor’s output “looks uniform” to the adversary Charlie. More
formally, the actual state of the system Charlie gets to see is

(2.1) Ut ◦ E(X,Ut) ◦ ρ(X)
def
=

∑

x∈{0,1}n,y∈{0,1}t

px2
−t |y, E(x, y)〉〈y, E(x, y)| ⊗ρ(x)

and includes the public random string y, the extractor’s output E(x, y), and his
own b-qubit information ρ(x). The ideal state of the system, where Charlie learns
no information about the output, is a product state where the extractor’s output is
independent of the information ρ(x) Charlie knows; i.e., it is

(2.2) Ut+m⊗ρ(X)
def
=

∑

w∈{0,1}m+t

2−(m+t) |w〉〈w| ⊗
∑

x∈{0,1}n

pxρ(x).

Our goal is to find a function E such that these two states are almost indis-
tinguishable. One can formalize this by requiring either that the two states above
are close to each other in the trace norm or, equivalently, that no observer can ε-
distinguish the two states (see, e.g., [25, Theorem 9.1]). We choose the latter option,
as it is more algorithmic in nature and lends itself more easily to the quantum setting.
We define the following.

Definition 2.2. A function E : {0, 1}n × {0, 1}t → {0, 1}m is a (k, b, ε) strong
extractor against quantum storage if for any classical distribution X ⊆ {0, 1}n with
H∞(X) ≥ k and every (n, b) quantum encoding {ρ(x)}, Ut ◦ E(X,Ut) ◦ ρ(X) is ε-
indistinguishable from Ut+m ◦ ρ(X).

SHORT SEED EXTRACTORS AGAINST QUANTUM STORAGE 669

In the definition above the min-entropy of X is denoted H∞(X) and is defined
to be

H∞(X) = min
a:X(a)>0

1/ log(X(a)).

If H∞(X) ≥ k, then for all a in its support X(a) ≤ 2−k. A distribution is flat if
it is uniformly distributed over its support. Every distribution X with H∞(X) ≥ k
can be expressed as a convex combination

∑
αiXi of flat distributions Xi, each with

min-entropy at least k. As in the classical case, this implies that in Definition 2.2
we could have replaced the condition “for any classical distribution X ⊆ {0, 1}n with
H∞(X) ≥ k” with the condition “for any classical flat distribution X ⊆ {0, 1}n with
H∞(X) ≥ k.”

We similarly define a (k, b, ε) strong extractor against classical storage, where we
restrict the encoding ρ(x) to storing only b bits (rather than qubits) of information
about x. If b = 0, we omit it and say E is a (k, ε) strong extractor. The following
well-known lemma shows that extractors that work well when b = 0 also work well
against large classical storage.

Lemma 2.3. Let E : {0, 1}n × {0, 1}t → {0, 1}m. Let k ≥ b ≥ 0 and ε ≥ 0. If E
is a (k− b− log ε−1, ε) strong extractor, then E is a (k, b, 2ε) strong extractor against
classical storage.

Proof. Let X be a flat distribution over 2k elements, and let ρ : {0, 1}n → {0, 1}b
be any classical encoding of n-bit strings to b bits. Let C denote the random variable
containing the value ρ(x). A simple calculation shows that

Pr
x∈X

[H∞(X |C = ρ(x)) ≤ k − b− log ε−1] ≤ ε.

Thus, except with probability ε, (X |C = ρ(x)) has enough min-entropy, and therefore
(Ut ◦ E(X,Ut) | C = c) is ε close to uniform. Thus E is a (k, b, 2ε) strong extractor
against classical storage.

A (k−b−log ε−1, ε) extractor is not necessarily a (k, b, 2ε) strong extractor against
quantum storage. One formal reason the proof of Lemma 2.3 fails against quantum
storage is that it is not clear how to define the conditional distribution (X |C = ρ(x))
when ρ(x) is quantum. We know this is more than just a formal problem, as demon-
strated by Gavinsky et al. [13].

Another way to look at the problem is as follows. An adversary has to fix some
encoding ρ(x) that determines the information he keeps about x. In the classical
setting this encoding determines a distribution (X |C = ρ(x)), as in the proof of
Lemma 2.3. Later, an independent random seed y ∈ {0, 1}t is chosen and E(x, y) is
calculated. Thus, from the adversary’s point of view, the seed y is independent of the
source (X |C = ρ(x)).

In the quantum world, however, things are not that simple. It is true that the
adversary chooses the information ρ(x) he keeps based solely on x, and ρ(x) is inde-
pendent of the random seed y. Later the adversary is shown the extractor’s output
w = E(x, y) and is given the choice to decide which measurement to apply. The
delicate issue is that the measurement may depend on the random seed y and the
extractor’s output w. Each measurement M = My,w and possible result z define
a classical distribution XM,z = (X | M(ρ(X) = z), and it is not difficult to show
that almost always XM,z has high min-entropy. The problem is that the distributions
XM,z depend on y, and so from the adversary’s point of view the seed y is correlated
with the source XM,z it sees. Consequently, the extractor may fail, as indeed happens
in the example shown by Gavinsky et al.

670 AMNON TA-SHMA

3. Some background on codes and random access codes.

3.1. Random access codes. A fundamental result in quantum information
theory, Holevo’s theorem [16], states that no more than b classical bits of information
can be faithfully transmitted by transferring b quantum bits from one party to another.
Formally, we have the following theorem.

Theorem 3.1 (Holevo). Let {ρ(x)} be any (n, b) quantum encoding. Let X be
a random variable with distribution {px}, and let ρ(X) = Exρ(x) =

∑
x pxρx. If Y

is any random variable obtained by performing a measurement on the encoding, then
I(X : Y) ≤ S(ρ(X))− ExS(ρx) ≤ S(ρ(X)).

In Theorem 3.1 I(:) stands for the mutual information function, and S(·) stands
for von Neumann entropy; see, e.g., [25, Chapter 11].

In view of this result, it is tempting to conclude that the exponentially many
degrees of freedom latent in the description of a quantum system must necessarily stay
hidden or inaccessible. However, the situation is more subtle since the recipient of the
n-qubit quantum state can choose which measurement he uses to extract information
about his state. In general, these measurements do not commute. Thus making a
particular measurement will disturb the system, thereby destroying some or all of the
information that would have been revealed by another possible measurement. Indeed,
Ambainis et al. [1, 2] ask whether there exists an (n, b) quantum encoding {ρ(x)} such
that the recipient can learn any bit xi of his choice. That is, they define the following.

Definition 3.2 (see [1, 2]). An n
p�→ t quantum random access encoding is

an (n, t) encoding {ρ(x)}x∈{0,1}n such that for every 1 ≤ i ≤ n, there is a POVM

E i =
{E i

0, E i
1

}
such that for all x ∈ {0, 1}n we have Tr(E i

xi
f(x)) ≥ p.4

Nayak and Ambainis et al. [24, 2] show that any quantum n
p�→ t encoding must

have t ≥ (1−H(p))n, where H(·) is the Shannon entropy function. In fact, this lower
bound also holds if we relax the worst-case condition ∀x∀iTr(E i

xi
f(x)) ≥ p and replace

it with the average-case condition ∀xEiTr(E i
xi
f(x)) ≥ p.

In this paper we need random access codes that are defined for subsets of {0, 1}n
as follows.

Definition 3.3. Let F ⊆ {0, 1}n. An F p�→ t quantum random access encoding
is an (n, t) encoding {ρ(x)}x∈F such that for every 1 ≤ i ≤ n, there is a POVM

E i =
{E i

0, E i
1

}
such that for all x ∈ F , i ∈ [n] we have Tr(E i

xi
f(x)) ≥ p.

We prove the following theorem.

Theorem 3.4. Let F ⊆ {0, 1}n.
1. For any δ ≥ 0, any quantum F

1
2+δ�→ t encoding satisfies t ≥ Ω(δ2

logn · log |F|).
2. For any δ ≥ 1

n , any quantum F 1−δ�→ t encoding satisfies t ≥ Ω(log(1/4δ)log n ·
log |F|).

Proof. We use the proof technique of [1]. First, one can turn the F
1
2+δ�→ t

encoding into another F 1−ε�→ t · T encoding, with T = O(log ε−1/δ2), as follows. The
new encoding is T copies of the original encoding. The decoding is the majority vote

4We briefly recall some quantum computation definitions; for more details see, e.g., [25, section
2.2.6]. A positive operator value measure (POVM) is the most general formulation of a measurement
in quantum computation. A POVM on a Hilbert space H is a collection {Ei} of positive semidefinite
operators Ei : Hom(H,H) → Hom(H,H) that sum up to the identity transformation, i.e., Ei � 0
and

∑
Ei = I. Applying a POVM {Ei} on a density matrix ρ results in answer i with probability

Tr(Eiρ).

SHORT SEED EXTRACTORS AGAINST QUANTUM STORAGE 671

over the T decodings of the T copies. By a standard Chernoff bound, the probability
of error is at most ε.

Fix ε = c
n2 for some constant c that will be determined later. Consider some

f ∈ F and its encoding ρ = ρ(f). For every i ∈ [n] the measurement E i recovers fi
with probability at least 1 − ε, i.e., almost with certainty. It is shown in [1]5 that
sequentially applying the measurements E1, . . . , En, the result (f1, . . . , fn) is obtained
with probability at least 1− 4n

√
ε = 1− 4

√
c. Taking c small enough, we recover the

whole string f with probability at least 1
2 . By Holevo’s theorem, T t ≥ I(UF : Y) ≥

1
2 log(|F|).

For the second item notice that for any δ ≥ ε one can turn an F 1−δ�→ t encoding into

another F 1−ε�→ O(t · T) encoding, using T = 2 log4δ ε, and the rest is as before.

Regev showed us an example where the bound in Theorem 3.4 is tight. Partition
the n bits to

√
n blocks, each of size

√
n. Take the set F to be all the bit strings

containing exactly one 1 in each block. F has Θ(
√
n · log n) entropy. Yet, consider

the following random access code that uses only O(
√
n + logn) bits. Given f ∈ F

with indices i1, . . . , i√n (i.e., index ij is 1 in the jth block), the random access code
encodes f by (h, h(i1), . . . , h(ik)), where h : [

√
n] → [10] is randomly chosen from a

family of pairwise independent hash functions. When asked for a bit t of the input,
say, from the jth block, the decoder just checks whether h(t) = h(ij). It outputs 1
if yes; otherwise it outputs 0. By the pairwise independent property, we output the
correct answer with probability 2/3 for each question.

We proved Theorem 3.4 with a definition that is worst-case over i. We remark
that the average case version is false. For example, if F is the set of all n-bit strings
of weight at least 2

3n, there is a trivial random access code of length zero that for all
f ∈ F succeeds on average over i with probability at least 2/3. Thus, in this case
there is a crucial difference between worst-case and average-case complexity over i.

3.2. Local list-decoding. A code is a function C : Σn → Σn̄, where n̄ is
the code length and n is its dimension. We identify a code C with its image C =
{C(x) | x ∈ Σn}. The distance d of the code is the minimum Hamming distance be-
tween two codewords in C. The balls of radius d−1

2 around codewords are disjoint,
and therefore one can uniquely correct up to so many errors. If we allow more than
d/2 errors, several decodings are possible. In many cases one can allow almost up
to the distance errors and still get only a few possible decodings. This leads to the
following definition.

Definition 3.5 (list-decoding). Let C : Σn → Σn̄. We say C is (p, L) list-

decodable if for every z ∈ Σn̄ there are at most L codewords y such that ag(z, y)
def
=

|{i ∈ [n̄]|zi = yi}| ≥ pn̄.

We now identify elements of y ∈ Σn̄ with functions y : [n̄] → Σ. A query to a
function y : [n̄] → Σ is a value i ∈ [n], and the answer to the query is y(i) (when
using function notation) or, equivalently, yi (when using string notation). We say
a decoding algorithm is local if it makes only a few queries to the corrupted word.
Formally, we have the following definition.

Definition 3.6 (local list-decoding). Let C : Σn → Σn̄. We say C has a
(p, L, q, β) local list-decoding if C is (p, L) list-decodable, and the following hold:

• There exists a probabilistic, polynomial time oracle machine A that on input
k ∈ [L] and i ∈ [n] outputs a Boolean value. A can make at most q queries

5Implicit in the proof of Lemma 4.2 in [1].

672 AMNON TA-SHMA

and each query is in the range [n̄].
• For every deterministic function y : [n̄] → Σ and every x ∈ Σn such that
ag(y, C(x)) ≥ pn̄, there exists k ∈ [L] such that for every i ∈ [n], PrA[A

y(k, i)
= x(i)] ≥ β (where Ay(k, i) denotes the output of the oracle machine A on
input (k, i) when the oracle queries are answered according to the function
y : [n̄] → Σ).

Sudan, Trevisan, and Vadhan proved the following theorem.

Theorem 3.7 (see [30]). For every δ = δ(n) > 0, there exists an explicit bi-
nary code of dimension n, length n̄ = poly(n, 1δ), and poly(n̄) encoding time, that is
(p = 1

2 + δ, L = poly(n̄), q = poly(logn, 1
δ), β = 1− δ) locally list-decodable.6

In our case we have access not to a deterministic function y : [n̄] → Σ but
rather to a probabilistic procedure that has high on average success probability; i.e.,
we are given access to a probabilistic oracle O : [n̄] → Σ. For y : [n̄] → Σ define

ag(O, y)
def
= Pri∈[n̄],O(O(i) = y(i)). We would like to do local list-decoding when

given access to O. Formally, we have the following definition.

Definition 3.8 (probabilistic oracle, local list-decoding). Let C : Σn → Σn̄.
We say that C has a (p, L, q, β) probabilistic oracle, local list-decoding if C is (p, L)
list-decodable, and the following hold:

• There exists a probabilistic, polynomial time oracle machine A that on input
k ∈ [L] and i ∈ [n] outputs a Boolean value. A can make at most q queries,
and each query is in the range [n̄].

• For every probabilistic oracle O : [n̄] → Σ and every x ∈ Σn such that
ag(O, C(x)) ≥ pn̄, there exists k ∈ [L] such that for every i ∈ [n], Pr[AO(k, i)
= x(i)] ≥ β.

If we are interested only in list-decoding with no restriction on the number of
queries, then list-decoding a probabilistic oracle is essentially the same as list-decoding
a string. This is because we can take O and for every query j ∈ [n̄] sample yj = O(j).
By a standard Chernoff bound, with high probability, the sampled string y also has
high agreement with C(x), and therefore the string x appears somewhere in the output
list of y.

The above argument does not work for local list-decoding. Here we need the
index k to depend on O alone, and not on the sampled string y or the index i. This
is an essential requirement, as in local list-decoding we do not reconstruct the whole
string x, but rather a single bit xi of it. The above argument therefore does not work,
as it may happen that the index of x in the list of y depends on the sampled string y,
and not just on O, as required by the definition.

Luckily, going back to the construction of [30], one can check that essentially the
same analysis shows the following.7

Theorem 3.9 (based on [30]). For every δ = δ(n) > 0, there exists an explicit
binary code, of dimension n, length n̄ = poly(n, 1δ), and encoding time poly(n̄), that

6The code in [30] is a Reed–Muller code concatenated with the Hadamard code. The list-
decoding algorithm first list-decodes the Hadamard code and then uses the result to list-decode the

Reed–Muller code. Working out the parameters, we get that the field size is |F | = O(log
2 n

δ5
). The

local list-decoding algorithm presented in [30] has |F |3 queries and solves the local list-decoding
problem worst-case over i. We remark that using a better inner code the query complexity can be
reduced.

7This is because the advice for x is a point v and a value σ such that x̂(v) = σ, where x̂ is the
low-degree extension of x, and with high probability such advice separates, for most of the sampled
strings y, the true codeword C(x) from the other codewords that arise from y.

SHORT SEED EXTRACTORS AGAINST QUANTUM STORAGE 673

is (p = 1
2 + δ, L = poly(n̄), q = poly(logn, 1δ), β = 1 − δ) probabilistic oracle, local

list-decodable.

4. Extractors against quantum storage from black-box PRGs. We now
reach Trevisan’s argument and its refinement to the quantum setting. Roughly speak-
ing, Trevisan shows that the Nisan–Wigderson PRG implies a corresponding extrac-
tor. We need, of course, to define what a PRG is, and, in fact, it will turn out that
we need two variants of the notion which are PRGs with a good on average recon-
struction algorithm and black-box PRGs. Indeed, we will define these notions soon.
However, for the time being we continue with a high-level description, and we first
give a schematic description of the work presented in this section.

Trevisan showed the following two claims:
• A PRG with a good-on-average reconstruction algorithm can be converted to
a black-box PRG, and

• black-box PRGs give rise to good classical extractors.
Trevisan then used the Nisan–Wigderson PRG, which has a good-on-average recon-
struction algorithm, to derive a corresponding extractor.

Using the above terminology we show that
1. PRGs with a good-on-average reconstruction algorithm can be converted to

black-box PRGs with a few queries, and
2. black-box PRGs with a few queries give rise to good extractors against quan-

tum storage.
Then, using the Nisan–Wigderson PRG that has a good-on-average reconstruction
algorithm, we derive a corresponding extractor that is good against quantum storage.

The claim in item 1 above is purely classical, and we prove it by replacing the list-
decodable, binary error correcting codes that Trevisan uses with locally list-decodable
binary error correcting codes. The claim in item 2 above constructs extractors against
quantum storage, and its proof uses the lower bound on random access codes presented
in section 3.1.

The section is organized as follows: in section 4.1 we define the various variants
of PRGs that we need. We then prove the first claim in section 4.2; namely, we
prove that PRGs with a good-on-average reconstruction algorithm can be converted
to black-box PRGs with a few queries. Finally, in section 4.3 we prove that black-box
PRGs with a few queries give rise to good extractors against quantum storage, which
is perhaps the central idea underlying the paper.

4.1. PRGs. A PRG is a mapping G : {0, 1}t → {0, 1}m that extends a short
string to a longer one. A PRG “ε-fools” a boolean test T if

| Pr
x∈{0,1}t

[T (G(x)) = 1]− Pr
y∈{0,1}m

[T (y) = 1] | ≤ ε.

One way of constructing such PRGs is by starting with some function f : [n] →
{0, 1} that is “hard” for some model of computation and showing that if Gf does
not fool some test T , then the test T can be used for efficiently computing the hard
function f , thus leading to a contradiction. More formally, we have the following
definition.

Definition 4.1. We say (G,R) is a pair consisting of a black-box PRG G and
a reconstruction algorithm R with a advice bits and q queries if the following hold:

• G : {0, 1}t → {0, 1}m is a classical oracle machine with oracle calls to a
function f : [n] → {0, 1}.

674 AMNON TA-SHMA

• R is a classical oracle circuit with inputs adv ∈ {0, 1}a and i ∈ [n], making
at most q queries to its oracle.

A pair (G,R) is (ε, p) pseudorandom if any test T that ε-breaks the PRG Gf

can be used for efficiently computing f(i) with success probability p (this is the
“reconstruction” step). This definition comes in two varieties: in one f(i) is computed
worst-case over i, and in the other f is correctly computed on most inputs i, but not
necessarily on all of them. Formally, we have the following definition.

Definition 4.2. Let (G,R) be as above.

• We say (G,R) is a black-box (ε, p)-PRG if, for every Boolean function f :
[n] → {0, 1} and every probabilistic oracle T : {0, 1}t+m → {0, 1} that ε-
distinguishes Ut ◦Gf (Ut) from uniform, there exists advice adv = adv(T, f) ∈
{0, 1}a such that for all i ∈ [n], Pr[RT (adv; i) = f(i)] ≥ p, where the proba-
bility is over the internal coins of R and T .

• We say (G,R) is a black-box (ε, p)-PRG with average-case reconstruction if,
for every Boolean function f : [n] → {0, 1} and every probabilistic oracle
T : {0, 1}t+m → {0, 1} that ε-distinguishes Ut ◦ Gf (Ut) from uniform, there
exists advice adv = adv(T, f) ∈ {0, 1}a such that Pr[RT (adv; i) = f(i)] ≥ p,
where the probability is over a uniform i ∈ [n] and the internal coins of
R and T .

Sometimes we omit R and say that G is a black-box (ε, p)-PRG, meaning that
there exists some reconstruction algorithm R such that (G,R) is an (ε, p)-PRG.

4.2. A black-box PRG with a few queries. Nisan and Wigderson [26] con-
structed a black-box PRG with average-case reconstruction. Specifically, for every
ε > 0, NWf :[n]→{0,1} : {0, 1}t → {0, 1}m has (ε, p = 1

2 + ε
2m) average-case reconstruc-

tion with a = O(m2) advice bits and t = O(log
2 n

logm) seed length. The Nisan–Wigderson
reconstruction algorithm uses exactly one oracle call to the distinguishing algorithm.

Trevisan showed how to combine a PRG with average-case reconstruction to-
gether with a good list-decodable binary code to get a black-box PRG. We need a
similar result, except that we have the additional requirement that the reconstruction
algorithm should make only a few queries. We achieve this goal by replacing the list-
decodable codes Trevisan uses with probabilistic oracle, locally list-decodable code.
We prove the following lemma.

Lemma 4.3 (worst-case to average-case reduction for black-box PRG using only
a few queries). Assume (G,R) is a black-box (ε, 12 + δ)-PRG with average-case recon-
struction using a advice bits and one query. Let C be a (p = 1

2+δ, L, q, β) probabilistic

oracle, locally list-decodable binary code. Define TRf (y) = NWC(f)(y). Then TR is
a black-box (ε, β)-PRG with a+ logL advice bits and q queries.

Proof. Let f̄ = C(f). Suppose T ε-breaks the PRG TRf = NWf̄ . As NWf̄ has
average-case reconstruction, given the right advice adv = adv(f, T) to R, RT (adv; i)
computes f̄i with average success probability p = 1

2 + δ over i ∈ [n̄] using a single
query to T . We can view RT (adv; ·) as a probabilistic oracle from [n̄] to {0, 1} having
1
2 + δ agreement with f̄ .

As C is a (p = 1
2+δ, L, q, β) probabilistic oracle, locally list-decodable binary code,

there exists a value k ∈ [L] such that the local list-decoding algorithm computes f
worst-case over i, given k and the probabilistic oracle RT (adv; ·). The advice to the
new reconstruction algorithm R includes the string adv and the value k ∈ [L].

Now assume that we ask R for the value of fi, i ∈ [n], i.e., that we wish to compute

R
T
(adv, k; i). We do this as follows. We apply the probabilistic oracle, locally list-

SHORT SEED EXTRACTORS AGAINST QUANTUM STORAGE 675

decoding algorithm of C and evaluate the q queries i1, . . . , iq ∈ [n̄] to f̄ = C(f) that it
is going to make. We answer the jth query with the probabilistic oracle RT (adv; ij),
and we output the local decoding result. By the probabilistic oracle, locally list-

decoding property, for every i ∈ [n] the reconstruction oracle R
T

outputs the right
answer with probability at least β.

Plugging in the parameters of the Nisan–Wigderson PRG, we get the following
theorem.

Theorem 4.4. Let ε > 0, m ≤ n. There exists an explicit black-box (ε, 1 − 1
m)

PRG Gf :[n]→{0,1} : {0, 1}t → {0, 1}m with a = O(m2+log n
ε) advice bits, t = O(

log2 n
ε

logm)

seed length, and q = poly(log n, mε) queries.

Proof. Let ε > 0, m ≤ n. Let NWf :[n]→{0,1} : {0, 1}t′ → {0, 1}m be the Nisan–

Wigderson PRG with a = O(m2) advice bits and t′ = O(log
2 n

logm) seed length. Nisan and

Wigderson showed that NWf is a black-box (ε, 12+δ) PRG with average reconstruction
and δ = ε

2m .
Let C be the (p = 1

2 + δ, L = poly(n̄), q = poly(logn, 1
δ), β = 1 − δ) probabilistic

oracle, locally list-decodable binary code of Theorem 3.9, where n̄ = poly(n/δ). Define

TRf :[n]→{0,1} : {0, 1}t̄ → {0, 1}m by TRf (y) = NWC(f)(y) with t̄ = O(log
2 n̄

logm) =

O(
log2 n

δ

logm) seed length. By Lemma 4.3 TR is a black-box (ε, 1 − δ) PRG with a =

O(m2+log n
ε) advice bits and q queries. Finally, note that a black-box (ε, 1− δ) PRG

is in particular a black-box (ε, 1− 1
m) PRG.

4.3. Black-box PRGs yield extractors against quantum storage. Tre-
visan [31] showed that black-box PRGs give rise to extractors. We show that they
actually give rise to extractors against quantum storage; alas their quality depends
on the number of oracle calls the reconstruction algorithm makes.

Proposition 4.5 (generalizing [31]). Suppose (G,R) is a black-box (ε, p = 1 −
1
m)-PRG with a advice bits and q queries. For n > m define E : {0, 1}n × {0, 1}t →
{0, 1}m by

E(f, y) = Gf (y).

Then E is a (k, b, 2ε) strong extractor against quantum storage for k = Ω(logn
logm (a +

qb)) + log ε−1.
Proof. Let T be a quantum test using b qubits of side information ρ. Let F be

the set of all functions f ∈ {0, 1}n for which T ε-distinguishes

Ut ◦ E(f, Ut) ◦ ρ(f) def
=

∑

y∈{0,1}t

2−t |y, E(f, y)〉〈y, E(f, y)| ⊗ρ(f)

from

Ut+m⊗ρ(f)
def
=

∑

w∈{0,1}m+t

2−(m+t) |w〉〈w| ⊗ρ(f).

Clearly,

|Pr[T (Ut ◦ E(X,Ut) ◦ ρ(X)) = 1]− Pr[T (Ut+m⊗ρ(X)) = 1]| ≤ ε+ Pr
x∈X

[x ∈ F],

where we have used the notation set in (2.1) and (2.2).

676 AMNON TA-SHMA

We will show |F| = 2O((a+qb) log n
log m). It will then follow that for any X ⊆ {0, 1}n,

E is a (log |F|
ε , b, 2ε) strong extractor against quantum storage, as promised.

We are left to show that F is indeed small. Recall that G is an (ε, p) PRG and
for any f ∈ F , T ε-distinguishes Ut ◦ E(f, Ut) ◦ ρ(f) from Ut+m⊗ρ(f). Thus, by
Definition 4.2, for every f ∈ F there exists an advice adv = adv(T, f) ∈ {0, 1}a such
that the reconstruction circuit RT (adv; ·) computes f : [n] → {0, 1} with q queries
to T and worst-case (over i) success probability p. We replace each of the q queries
to T with a quantum circuit acting on its classical input and an independent b-qubit
state that is initialized to ρ(f). Altogether, the new circuit uses qb qubits of side
information. Notice that because the inputs to the different queries are in product
state, the answers to the T queries are independent. The resulting quantum circuit
recovers the bits of f : [n] → {0, 1} with probability p, worst-case over i. Thus, F has
a random access code of length a+ qb and worst-case success probability p = 1− 1

m .

By Theorem 3.4, item 2, a + qb = Ω(logm
logn log |F|), and so |F| = 2O((a+qb) log n

log m), as
promised.

Plugging Theorem 4.4 into Proposition 4.5, we get Theorem 1.1.

Acknowledgments. I would like to thank Avraham Ben-Aroya, Ashwin Nayak,
Oded Regev, and Pranab Sen for stimulating talks on the subject. I also thank Oded
for the example showing that the bound of Theorem 3.4 is tight.

REFERENCES

[1] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, Dense quantum coding and quantum
finite automata, in STOC, ACM, New York, 1999, pp. 376–383.

[2] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, Dense quantum coding and quantum
finite automata, J. ACM, 49 (2002), pp. 496–511.

[3] A. Ben-Aroya and A. Ta-Shma, Better Short-Seed Extractors against Quantum Knowledge,
preprint, http://arxiv.org/abs/1004.3737, 2010.

[4] C. H. Bennett, G. Brassard, C. Crepeau, and U. Maurer, Generalized privacy amplifica-
tion, IEEE Trans. Inform. Theory, 41 (1995), pp. 1915–1923.

[5] C. H. Bennett, G. Brassard, and J.-M. Robert, Privacy amplification by public discussion,
SIAM J. Comput., 17 (1988), pp. 210–229.

[6] M. Christandl, R. Renner, and A. Ekert, A Generic Security Proof for Quantum Key
Distribution, preprint, http://arxiv.org/abs/quant-ph/0402131, 2004.

[7] A. De, C. Portmann, T. Vidick, and R. Renner, Trevisan’s Extractor in the Presence of
Quantum Side Information, preprint, http://arxiv.org/abs/0912.5514, 2009.

[8] A. De and T. Vidick, Near-optimal extractors against quantum storage, in STOC, ACM, New
York, 2010, pp. 161–170.

[9] Y. Dodis and A. Smith, Correcting errors without leaking partial information, in STOC,
ACM, New York, 2005, pp. 654–663.

[10] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan, Extensions to the method of multiplicities,
with applications to Kakeya sets and mergers, in FOCS, IEEE, Washington, DC, 2010, pp.
181–190.

[11] Z. Dvir and A. Wigderson, Kakeya sets, new mergers and old extractors, in FOCS, IEEE,
Washington, DC, 2008, pp. 625–633.

[12] S. Fehr and C. Schaffner, Randomness Extraction via Delta-Biased Masking in the Presence
of a Quantum Attacker, preprint, http://arxiv.org/abs/0706.2606, 2007.

[13] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de Wolf, Exponential separations for
one-way quantum communication complexity, with applications to cryptography, in STOC,
ACM, New York, 2007, pp. 516–525.

[14] O. Goldreich and A. Wigderson, Tiny families of functions with random properties: A
quality-size trade-off for hashing, Random Structures Algorithms, 11 (1997), pp. 315–343.

[15] V. Guruswami, C. Umans, and S. Vadhan, Unbalanced expanders and randomness extractors
from Parvaresh-Vardy codes, in Computational Complexity, IEEE, Washington, DC, 2007,
pp. 96–108.

SHORT SEED EXTRACTORS AGAINST QUANTUM STORAGE 677

[16] A. S. Holevo, Some estimates of the information transmitted by quantum communication
channels, Probl. Inf. Transm., 9 (1973), pp. 177–183.

[17] R. Impagliazzo, L. Levin, and M. Luby, Pseudo-random generation from one-way functions,
in STOC, ACM, New York, 1989, pp. 12–24.

[18] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation, AMS,
Providence, RI, 2002.

[19] R. König, U. Maurer, and R. Renner, On the Power of Quantum Memory, preprint, http://
arxiv.org/abs/quant-ph/0305154, 2003.

[20] R. König, U. Maurer, and R. Renner, On the power of quantum memory, IEEE Trans.
Inform. Theory, 51 (2005), pp. 2391–2401.

[21] R. König and R. Renner, Sampling of Min-Entropy Relative to Quantum Knowledge, pre-
print, http://arxiv.org/abs/0712.4291, 2007.

[22] R. König and B. Terhal, The bounded-storage model in the presence of a quantum adversary,
IEEE Trans. Inform. Theory, 54 (2008), pp. 749–762.

[23] C. Lu, O. Reingold, S. Vadhan, and A. Wigderson, Extractors: Optimal up to constant
factors, in STOC, ACM, New York, 2003, pp. 602–611.

[24] A. Nayak, Optimal lower bounds for quantum automata and random access codes, in FOCS,
IEEE, Washington, DC, 1999, pp. 369–376.

[25] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press, Cambridge, UK, 2000.

[26] N. Nisan and A. Wigderson, Hardness vs. randomness, J. Comput. System Sci., 49 (1994),
pp. 149–167.

[27] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci., 52
(1996), pp. 43–52.

[28] J. Radhakrishnan and A. Ta-Shma, Bounds for dispersers, extractors, and depth-two super-
concentrators, SIAM J. Discrete Math., 13 (2000), pp. 2–24.

[29] A. Srinivasan and D. Zuckerman, Computing with very weak random sources, SIAM J.
Comput., 28 (1999), pp. 1433–1459.

[30] M. Sudan, L. Trevisan, and S. Vadhan, Pseudorandom generators without the xor lemma,
J. Comput. System Sci., 62 (2001), pp. 236–266.

[31] L. Trevisan, Extractors and pseudorandom generators, J. ACM, 48 (2001), pp. 860–879.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

