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Abstract

We give a new construction of condensers based on Parvaresh-Vardy codes [PV05]. Our condensers
have entropy rate (1 − α) for subconstant α (in contrast to [GUV09] which required constant α) and
suffer only sublinear entropy loss.

Known extractors can be applied to the output to extract all but a subconstant fraction of the minen-
tropy. The resulting (k, ε) extractor E : {0, 1}n × {0, 1}d → {0, 1}m has output length m = (1− α)k

with α = 1/poly log(n), and seed length d = O(logn), when ε ≥ 1/2log
β n for any constant β < 1.

Thus we achieve the same “world-record” extractor parameters as [DKSS09], with a more direct con-
struction.
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1 Introduction

A (k, ε) extractor is a function E : {0, 1}n×{0, 1}d → {0, 1}m with the property that for every distribution
X over {0, 1}n with minentropy at least k, the distribution E(X,Ud) is ε-close to uniform. In applications
one typically needs explicit constructions, i.e., ones in which E can be computed in time poly(n/ε). Non-
explicit (probabilistic) constructions suggest that this should be possible with output length m = k + d −
2 log(1/ε)−O(1) and seed length d = log(n− k) + 2 log(1/ε) +O(1).

Following an extensive line of research, Lu, Reingold, Vadhan, and Wigderson [LRVW03] were the first
to achieve extractors “optimal up to constant factors.” These extractors have m = (1−α)k for any constant
α > 0, and d = O(log n), for constant ε > 0. As is common in the area, the [LRVW03] construction
combines several components in a delicate composition.

In 2007, Guruswami, Umans, and Vadhan [GUV09] discovered a simpler construction (that also handles
arbitrary error ε) based on Parvaresh-Vardy codes [PV05]. The main object they construct is a condenser,
which is a weakening of an extractor in which the output distribution is only required to be ε-close to a
distribution with large min-entropy k′. The [GUV09] condenser is lossless (in the sense that the output
minentropy k′ is exactly k + d), and has output length m = (1 + α)k′ for any constant α > 0, and
d = O(log n/ε). Thus these condensers have constant minentropy rate (defined to be k′/m). Known
extractors that work for constant minentropy rate can be applied to the output to extract any constant fraction
of the minentropy. The overall construction is more direct than that of [LRVW03], having essentially two
stages: condense, and then extract.

In 2008, Dvir and Wigderson [DW11] obtained an alternate construction achieving essentially the same
parameters as [GUV09] (but requiring ε ≥ 1/poly(n)). The main new object in [DW11] was a beautiful
new construction of mergers, which can be inserted into the program outlined by Ta-Shma [TS96] to obtain
extractors. The basic extractor construction has four stages: obtain a somewhere block-source, extract to get
a somewhere random source, combine using the merger to get a source with constant minentropy rate, and
then extract.

In 2009, Dvir, Kopparty, Saraf, and Sudan [DKSS09] showed how to extend the polynomial method
at the heart of the proof in [DW11], by introducing multiplicities. Their so-called extended method of
multiplicities has several applications, one of which is an improvement to the parameters of the merger from
[DW11]. Following the same sequence of steps as in the basic extractor construction of [DW11], they obtain
an extractor having output length m = (1 − α)k with α = 1/poly log(n), and seed length d = O(log n)

when ε ≥ 1/poly log(n). In fact, a more careful analysis1 can obtain the same result when ε ≥ 1/2log
β n for

any constant β < 1. This is the current best extractor construction, and indeed the first extractor construction
with sublinear entropy loss (entropy loss for an extractor is defined to be m+ d− k).

In this work we revisit the [GUV09] condenser construction, and show how to achieve condensers with
entropy rate (1−α) for subconstant α ([GUV09] required α to be a constant), while suffering only sublinear
entropy loss, thus improving the current best condenser construction.

Known extractors can be applied to the output to extract all but a subconstant fraction of the minentropy.
As with [GUV09] our overall extractor construction has only two self-contained stages: condense, and
then extract. By way of comparison with [DW11, DKSS09], our condenser takes us immediately to the
second-to-last stage of their four stages, making for a more direct extractor construction. After using the
repeated extraction trick of [WZ99], we obtain an extractor achieving the same “world-record” parameters
as [DKSS09], namely, having output length m = (1 − α)k with α = 1/poly log(n), and seed length
d = O(log n) when ε ≥ 1/2log

β n for any constant β < 1.

1One only needs to set δ = log1−β n and ε = 2− logβ n in Step 3 in the proof of their Theorem 20.
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To obtain our result we introduce three new ideas into the basic framework of [GUV09], which is based
on the codes of Parvaresh and Vardy [PV05]. PV codes are bundles of correlated Reed-Solomon codewords,
with the correlation described by a simple algebraic operation. The first new idea is to use a different
correlation based on what we call the covering curve, whose algebraic properties we need elsewhere in the
argument. Second, we bound the total degree of the interpolating polynomial used in the proof rather than
the individual degrees, and compensate by using multiplicities in the style of [GS99]. Finally, and most
critically, we employ “two levels” of the main component of the proof in [PV05], in which they deduce that
the interpolating polynomial vanishes at certain points in an extension field from knowledge of its zeros over
the base field. The three new ideas work in concert, and it appears that no proper subset of them leads to
any substantive improvement.

2 The GUV framework and our new ideas

Here we present the basic construction2 of [GUV09] in a somewhat more general setting, in order to be
able to describe our new ideas. The formal presentation follows in Section 3 (although the informal dis-
cussion is necessarily somewhat technical since our improvement concerns a low-level relationship between
parameters of the construction).

2.1 The lossy GUV condenser

We begin with the formal definition of a (lossy) condenser:

Definition 2.1. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a k →ε k
′ condenser if for all distributions

X with minentropy at least k, the distribution C(X,Ud) is ε-close to a distribution with minentropy at least
k′. The condenser is explicit if C can be computed in time poly(n, 1/ε). The entropy loss of the condenser
is k + d− k′ and the entropy rate is k′

m .

To prove that a function is a lossy condenser, we use the “list-decoding” approach described in [GUV09],
captured by the following lemma:

Lemma 2.1 (Lemma 5.4 in [GUV09]). Let C : {0, 1}n × {0, 1}d → {0, 1}m be a function. If for all
T ⊆ {0, 1}m of size at most L, we have that the set

LIST(T, ε) = {x : Pr
y
[C(x, y) ∈ T ] ≥ ε}

has cardinality at most H , then C is a log(H/ε) →2ε log(L/ε)− 1 condenser.

The basic construction. Let n,m, ε be parameters. Choose a field Fh and a polynomial E(X), irreducible
over Fh of degree n. Let F = Fh[X]/E(X). Let C = (C0, . . . , Cm−1) (“the curve”) be a function from F
to Fm, to be fixed later, that can be computed by a polynomial-size arithmetic circuit. Consider the function:

G(f ∈ F, x ∈ Fh) = (C0(f)(x), . . . , Cm−1(f)(x)). (1)

As per Lemma 2.1, to prove that this is a lossy condenser we need to show that for every set T ⊆ Fm
h up to

size L, the set
LIST(T, ε) = {f ∈ F : Pr

x∈Fh

[G(f, x) ∈ T ] ≥ ε}

2We present the construction and analysis of lossy condensers, since that is what we will use later.
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is smaller than H . To maximize the entropy rate we want L large (as close to hm as possible), and to
minimize the entropy loss, we want H small (as close to L/h as possible). We will see below that in
[GUV09] L can be no larger than (hm)1−α for a constant α > 0. Our new construction breaks this barrier
(achieving subconstant α) while keeping H comparably small.

The main argument. The main argument in [GUV09] is quite compact. It allows us to conclude that every
f ∈ LIST(T, ε) is a root of a low degree univariate polynomial, as follows. Let Q ∈ Fh[W0, . . . ,Wm−1] be
a non-zero polynomial that vanishes on T , and for which Q ◦ C (a univariate polynomial over F) is not the
zero polynomial. By definition, for every f ∈ LIST(T, ε), the polynomial

Rf (X) = Q(C0(f)(X), . . . , Cm−1(f)(X))

vanishes on an ε fraction of the x ∈ Fh, which implies it is the zero polynomial, provided

deg(Rf ) = ndeg(Q) < εh. (2)

Then, Rf = 0 implies f is a root of Q ◦ C, and therefore |LIST(T, ε)| ≤ deg(Q ◦ C).

Choice of the curve and the main constraint. In [GUV09], for a parameter ℓ < h, they choose Ci(Z) =
Zℓi (the “PV curve”), and they require that Q satisfies degi(Q) ≤ ℓ− 1, where degi(Q) is the degree of Wi

in Q. This combination ensures that Q ◦C is not the zero polynomial, if Q ̸= 0. This construction can then
handle sets T of size L = ℓm − 1 since Q with the specified degrees has more degrees of freedom than the
number of homogenous constraints needed to force Q to vanish on T . Eq. (2) in the argument above then
requires

ℓ < εh/(nm) (3)

to ensure n deg(Q) ≤ εh. The resulting upper bound on |LIST(T, ε)| is H = deg(Q ◦ C) ≤ hm − 1.
Notice that Eq. (3) forces L < ℓm ≤ (hm)1−α for some constant α > 0, since we need h ≤ poly(n) in

order to maintain seed length O(log n). Thus the entropy rate can be no better than a constant.

2.2 The new ideas

The new ideas work together to replace the constraint L ≤ (εh/(nm))m with the constraint L ≤ O( εh2 )
m,

which results in entropy loss about k
logβ n

and entropy rate (1 − O(1/ logβ n)) when ε > 1/2log
1−β n (and

when choosing h ≥ nm2).

The “two-layered” construction. In Eq. (2) and (3) the n comes from the fact that in forming Rf (X),
the substituted polynomials Ci(f) have degree n. We show how to augment the basic construction and the
main argument so that the bottleneck inequality arises when only substituting linear polynomials, effectively
replacing this n with 1.

Construct the degree 2 extension field Fq = Fh[Y ]/P (Y ) where P is irreducible over Fh and of degree
2, and the degree n extension field F = Fq[X]/E(X) where E is irreducible over Fq and of degree n. As
before we have a function C = (C0, . . . , Cm−1) from F to Fm (to be fixed later) that can be computed by a
polynomial-size arithmetic circuit. The new function is:

G(f ∈ F;x ∈ Fq, y ∈ Fh) = (C0(f)(x)(y), . . . , Cm−1(f)(x)(y)). (4)
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As before, to bound the size of LIST(T, ε), we argue that every f ∈ LIST(T, ε) is a root of Q ◦ C. Now
there are two steps to the argument. First, for every f ∈ LIST(T, ε), for at least an ε/2 fraction of x ∈ Fq,
the polynomial

Sf,x(Y ) = Q(C0(f)(x)(Y ), . . . , Cm−1(f)(x)(Y ))

vanishes on an ε/2 fraction of the y ∈ Fh (by an averaging argument). This implies Sf,x is the zero
polynomial, provided deg(Q) < εh/2. For each such x, the polynomial

Rf (X) = Q(C0(f)(X), . . . , Cm−1(f)(X))

vanishes on x and so Rf is the zero polynomial, provided n deg(Q) < εq/2. As before we conclude
that f is a root of Q ◦ C as desired. As long as h > n, the two new constraints (deg(Q) < εh/2 and
n deg(Q) < εq/2) are both implied by deg(Q) < εh/2, and we can see that the n in Eq. (2) has disappeared.

Total degree and multiplicities. In Eq. (3) the m comes from the fact that the total degree of Q is ℓm. A
more efficient version of the argument would replace the bound on the individual degrees of the variables of
Q with a bound on the total degree. However, the constraint deg(Q) < εh/2 allows only(

εh/2 +m

m

)
≈ (εh/2)m/m!

degrees of freedom, and the m! in the denominator prevents a direct gain without further modification.
As pioneered by [GS99], we use multiplicities to address this problem. We require that Q vanishes on

the set T with multiplicity t, and then our main constraint becomes deg(Q) < εht/2, since when arguing
that Sf,x vanishes we count the zeros in their multiplicity. Because forcing Q to vanish at a point in Fm

h with
multiplicity t entails

(
t+m
m

)
constraints, we can now handle sets T up to size(

εht/2 +m

m

)
/

(
t+m

m

)
≈ (εh/2)m,

(provided t ≥ m2) as promised. However, this modification comes at a price: we can no longer easily
argue that Q ◦C is not the zero polynomial. In [GUV09] the PV curve was selected with ℓ greater than the
individual degrees of Q, which ensured that distinct monomials in Q map to distinct monomials of Q◦C (and
thus Q ◦ C ̸= 0 if Q ̸= 0). Now, if we choose ℓ > deg(Q) = εht/2, we find that deg(Q ◦ C) ≥ (εht/2)m,
while we are shooting for deg(Q ◦ C) ≤ (εh/2)m. In fact with t ≥ m2, the weaker bound spoils the
sublinear entropy loss. Nevertheless, with a different curve C, we are able to show (by a less obvious
argument) that Q can be chosen so that it simultaneously vanishes on T with multiplicity t, and Q ◦C ̸= 0.
These ideas are described next.

The covering curve. In our construction we replace the PV curve used in [GUV09] with the “covering
curve,” which has the following form (it is a linearized polynomial):

Ci(Z) =
m−1∑
j=0

α
(i)
j Zhj

.

We show how to choose the α
(i)
j in F so that Fm

h ⊆ Im(C), which is the key property.
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Since the covering curve passes through all the points in Fm
h , one way to find a Q that vanishes on a

specified set T with multiplicity t, while Q ◦ C ̸= 0, is to ensure that Q is non-zero at some point in Fm
h

outside of T . Indeed this is what we are able to do. Also, since the covering curve has degree hm−1 just
like the PV curve, the overall construction and proof yields a bound on H comparable to the one obtained
in [GUV09] (while significantly improving the parameter L).

3 The improved condenser

In this section we give the formal presentation of our new construction and proof.

The covering curve. We begin with a short proof implying that the desired “covering curve” exists and
can be found efficiently.

Lemma 3.1. Let β0, . . . , βℓ−1 be a basis for Fhℓ over Fh. Then for every 1 ≤ m ≤ ℓ, there exist elements
α
(i)
j ∈ Fhℓ (for i, j = 0, . . . ,m− 1) such that C = (C0, . . . , Cm−1) given by

Ci(Z) =

m−1∑
j=0

α
(i)
j Zhj

satisfies Ci(
∑m−1

j=0 cjβj) = ci for all i and cj ∈ Fh. In particular, Fm
h is contained in the image Im(C).

Proof. First note the Ci is a linearized polynomial, i.e., for any v1, v2 ∈ Fhm and any α, β ∈ Fh, Ci(αv1 +
βv2) = αCi(v1) + βCi(v2). Next notice that the requirements Ci(βi) = 1 and Ci(βj) = 0 for 0 ≤ j < m,
j ̸= i place m linear constraints on the m coefficients of Ci. The m × m matrix B corresponding to this

linear system has B[i, j] = βhj

i and the constraints can be expressed as B

 α
(i)
0
...

α
(i)
m−1

 = ei, where ei is

the column vector with a 1 in the i’th coordinate and zero elsewhere. It is well-known (see, e.g., Theorem
3.51 in [LN94]) that B is invertible if and only if the βi are linearly independent, which they are in our case.
Thus the desired coefficients for Ci may be found efficiently by solving this linear system.

Then, note that for each i (using the fact that Ci is a linearized polynomial):

Ci

m−1∑
j=0

cjβj

 =
m−1∑
j=0

Ci(cjβj) =
m−1∑
j=0

cjCi(βj) = ci

as claimed. In particular, C

m−1∑
j=0

cjβj

 : c0, . . . , cm−1 ∈ Fh

 = Fm
h

and so Fm
h is contained in the image of C.
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The new condenser. Now, we can describe the new condenser. We are given parameters n,m, ε. Let h
be a prime power (a parameter to be chosen below). Select a degree two polynomial P , irreducible over
Fh, and construct the extension field Fq = Fh[Y ]/P (Y ). Select a degree n polynomial E, irreducible over
Fq, and construct the extension field F = Fq[X]/E(X). Let C = (C0, . . . , Cm−1) be the “covering curve”
guaranteed by Lemma 3.1 that contains Fm

h in its image. The new condenser is given by:

G(f ∈ F;x ∈ Fq, y ∈ Fh) = (C0(f)(x)(y), . . . , Cm−1(f)(x)(y)). (5)

where we understand fi = Ci(f) to be the canonical representative in F (a polynomial of degree at most
n− 1), and we understand fi(x) to be the canonical representative in Fq (a polynomial of degree at most 1).

Our main theorem is

Theorem 3.2 (main). Let G be the function given by Eq. (5). Then G is a

[m log h+ 2 logm− 1] →4ε [m log(εh/2) + log(1/ε)− log(2e)]

condenser, provided h > nm2.

Note that (provided ε < 1/2e), this k →4ε k
′ condenser has entropy rate:

k′

log(hm)
=

m log(εh/2) + log(1/ε)− log(2e)

log(hm)
≥ log(εh/2)

log h
= 1− log(2/ε)

log h
≥ 1− log(2/ε)

log n
,

and sublinear entropy loss because

k − k′ ≤ m log h+ 2 logm−m log(εh/2) = 2 logm−m log(ε/2) ≤ k

log n
log(2/ε) + 2 logm,

because k ≥ m log h ≥ m logn.

3.1 Proof of main theorem (Theorem 3.2)

We need the following definition of Hasse derivatives and multiplicity:

Definition 3.1. For Q ∈ Fh[W0, . . . ,Wm−1], and a vector a⃗ = (a0, . . . , am−1) of non-negative integers,
the a⃗-th Hasse derivative of Q, denoted Q(a⃗), is the coefficient of the monomial Za0

0 Za1
1 · · ·Zam−1

m−1 in the
polynomial

Q(W0 + Z0, . . . ,Wm−1 + Zm−1).

We say that
∑

i ai is the weight of vector a⃗, denoted wt(⃗a). The multiplicity of α ∈ Fm
h in Q, denoted

mult(Q,α) is the maximum i such that Q(a⃗)(α) = 0 for all a⃗ of weight less than i.

It is clear that deg(Q(a⃗)) ≤ deg(Q). We will use two other basic property of Hasse derivatives:
mult(Q(a⃗), α) ≥ mult(Q,α) − wt(⃗a) (Lemma 5 in [DKSS09]), and mult(Q ◦ C,α) ≥ mult(Q,C(α))
(Proposition 6 in [DKSS09]).

We now proceed with the proof.
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Choosing Q. Set t = m2, and consider a set T ⊆ Fm
h of size at most L = (εh/2)m/e. Choose a non-zero

Q0 ∈ Fh[W0, . . . ,Wm−1] of total degree D = εth/2− 1, that vanishes with multiplicity t on T . Since(
D+m
m

)(
t+m
m

) >
Dm

m!
· m!

tm(1 +m/t)m
≥ (εh/2)m/e ≥ |T |

such an interpolating polynomial exists, by solving a homogeneous linear system in the coefficients of Q0.
By the multiplicity version of Schwartz-Zippel [DKSS09], it cannot be the case that Q0 vanishes with

multiplicity at least t/2 on all of Fm
h (the sum of the multiplicities over Fm

h can be at most D
h h

m = hm−1D <

(t/2) · hm). Therefore, by the definition of multiplicity, there exists a⃗ of weight at most t/2 for which Q
(a⃗)
0

does not vanish on all of Fm
h . We set

Q = Q
(a⃗)
0 .

Since the weight of a⃗ is at most t/2, we also know that Q still vanishes on T with multiplicity at least
t− t/2 = t/2, and of course deg(Q) ≤ deg(Q0) ≤ D.

We claim that Q ◦ C, as a univariate polynomial in F[Z], is not the zero polynomial. To see that, notice
that F is an extension field of Fh (namely, isomorphic to Fh2n) and by Lemma 3.1, Fm

h is contained in
Im(C). As Q does not vanish on all of Fm

h , Q ◦ C is not identically zero.

The “two-layered” analysis. Recall that LIST(T, 2ε) = {f : Prx,y[G(f ;x, y) ∈ T ] ≥ 2ε}. We have the
following claim:

Claim 3.2.1. Every f ∈ LIST(T, 2ε) is a root of Q ◦ C; i.e., Q(C(f)) = 0.

Proof. Fix an f ∈ LIST(T, 2ε). By averaging, we have that f ∈ LIST(T, 2ε) implies

Pr
x
[Pr
y
[G(f ;x, y) ∈ T ] ≥ ε] ≥ ε.

Fix an x ∈ Fq for which Pry[G(f ;x, y) ∈ T ] ≥ ε. Consider the univariate polynomial

Sf,x(Y ) = Q(C0(f)(x)(Y ), . . . , Cm−1(f)(x)(Y ))

which has degree at most D. For at least εh distinct y ∈ Fh, we have that mult(Sf,x, y) ≥ t/2. Since
εht/2 > D, we conclude that Sf,x = 0 in Fh[Y ], and therefore also Sf,x mod P (Y ) = 0 in Fq.

Now, we view Q as an element of Fq[W0, . . . ,Wm−1], and we see that Sf,x = 0 implies that the
univariate polynomial

Rf (X) = Q(C0(f)(X), . . . , Cm−1(f)(X))

has a root at x. This holds for εq distinct x ∈ Fq, and then because

εq = εhnm2 = εhnt > nD ≥ deg(Rf ),

we find that Rf = 0 in Fq[X] and therefore also Rf mod E(X) = 0 in F.
Now we view Q as an element of F[W0, . . . ,Wm−1] and we see that Rf = 0 implies that the univariate

polynomial
(Q ◦ C)(Z) = Q(C0(Z), . . . , Cm−1(Z))

has a root at f , as claimed.

We conclude that |LIST(T, 2ε)| ≤ deg(Q ◦ C) ≤ hm−1D ≤ εthm/2 = H . By Lemma 2.1, this means
that G is a log(Hε ) →4ε log(

L
ε ) condenser, i.e., a

log(thm/2) →4ε log ((εh/2)
m/(eε))− 1

condenser. This concludes the proof of Theorem 3.2.

7



4 From condensers to extractors

At this point we have a very dense source, and the extraction task we have is identical to the one in [DKSS09]
after they use their new mergers in the framework of [TS96] (in contrast, we arrived at this point directly,
with one application of our new condenser). To describe our extractors, we follow the nice presentation of
[DKSS09] (their Section 6.2). We emphasize that from now on we are using standard tools, and in particular
we are not using the new results of [DKSS09] (but we are mirroring their exposition in this section for easy
comparison of the two works).

Condense and extract. Our main theorem (Theorem 3.2) constructs a good condenser with high output
entropy rate, namely,

Theorem 4.1 (Theorem 3.2 rephrased). For all positive integers k < n and ε > 0, there exists an explicit
function

C : {0, 1}n × {0, 1}d → {0, 1}m

that is a k →ε (1 − δ)m condenser, for δ = log(8/ε)
logn . The condenser has seed length d = O(log n) and

entropy loss δk +O(logm) + d.

Thus, applying our condenser we get a highly condensed source. The following lemma from [DKSS09]
(which is a simple consequence of a block-source extractor constructed in [RSW06]) describes an excellent
extractor for highly condensed sources:

Lemma 4.2 ([DKSS09, Lemma 27]). For any k and δ > 0, there exists an explicit ((1 − δ)k, k−Ω(1))
extractor E : {0, 1}k × {0, 1}d → {0, 1}(1−3δ)k with seed length d = O(log k).

Combining the two we obtain the following extractor:

Theorem 4.3. For all positive integers k < n and ε > k−Ω(1) there exists an explicit (k, ε) extractor
E : {0, 1}n × {0, 1}d → {0, 1}m, with d = O(log n) and m− k ≤ O(δk), for δ = log(8/ε)

logn as above.

Setting ε = 8 ·2− logβ n, we find that δ is logβ−1 n. Next, we reduce the entropy loss factor to any inverse
polynomial in log n, as in [DKSS09], using repeated extraction [WZ99].

Reducing the entropy loss by repeated extraction. We can make the extractor of Theorem 4.3 strong
using techniques from [RSW06]. We can also reduce δ to δc by applying c independent extraction steps
[WZ99]. Both transformations are described in detail in [DKSS09, Section 6.2], and have the following
cost:

• The transformation from an extractor to a strong extractor has the following cost:

– It enlarges the error from ε to
√
ε,

– It enlarges the seed length from d to O(d), and,

– It increases the entropy loss by an additive factor of 2 log(1/ε) +O(1).

See [DKSS09, Theorem 30].

• The transformation reducing the entropy loss using c independent extraction steps (for some integer
c ≥ 1) has the following cost:
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– It enlarges the error from ε to O(cε),
– It enlarges the seed length from d to cd, and,
– It decreases the entropy loss from δk to δck +O(c log(1/ε)).

See [DKSS09, Theorem 31], taking r = log(1/ε).

Altogether, we get:

Theorem 4.4. For all constants 1 > β > 0 and b ≥ 1, there exists a constant c ≥ 1 for which the following
holds: For all positive integers k < n, there exists an explicit (k, ε = 2− logβ n) strong extractor

E : {0, 1}n × {0, 1}d → {0, 1}m,

with

• seed length O(log n), and

• entropy loss k + d−m = O(log n+ δk), where δ = 1
logb n

,

provided k ≥ (1/ε)c.

For smaller min-entropies k an even better (smaller entropy loss) explicit extractor exists:

Theorem 4.5. For all constants 1 > β > 0 and c ≥ 1, the following holds: For all positive integers k < n,
there exists an explicit (k, ε = 2− logβ n) strong extractor

E : {0, 1}n × {0, 1}d → {0, 1}m,

with

• seed length O(log n), and

• entropy loss k + d−m = O(log n+ δk), where δ = 2− log1−β n,

provided k ≤ (1/ε)c.

Proof. Our starting point is [GUV09, Theorem 4.17] which extracts half the entropy with seed length
O(log n/ε). We apply repeated extraction O(log(1/δ)) times to get a (1 − δ)m output length, using
O(log n) + O(log(k/ε) log(1/δ)) seed length (the O(log n) additive term is because we first apply the
GUV lossless condenser to reduce the input length to O(k)). For the specified parameters (i.e., for such a
small min-entropy k) the seed length is O(log n) as required.

5 Conclusions and open problems

We wonder whether the “two-layered” construction and the accompanying proof ideas have applications
elsewhere. As one example, we mention that this technique can improve the [DKSS09] merger, which
has seed length d = 1

δ log(
2Λ
ε ), where Λ is the number of sources, ε the statistical error and δ is the

entropy loss (expressed as a fraction). Using the “two-level” construction we can reduce the seed length
to O(max

{
1
δ log(

1
ε ), log(Λ)

}
). We do not see, however, how to translate this improvement into a better

extractor construction.
Another important question is whether the condenser in this paper can be improved further. For example

achieving an O(log n) entropy rate deficiency together with O(log n) entropy loss would lead to optimal
output length extractors (with O(log n) seed length) via standard techniques. In this direction, we note
that the existence of non-trivial finite-field Kakeya set constructions presents a potential pitfall that must be
avoided.
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A connection to Kakeya sets. To improve the entropy rate of our condensers, one wishes to handle sets
T with size approaching hm/poly(n). Currently we handle sets T with size no larger than hm/2m, which
limits our output entropy rate to 1− 1/ log h ≤ 1− 1/O(log n). Ignoring ε for this discussion, our current
methodology is to show that there exists a degree ht− 1 polynomial Q that vanishes on T with multiplicity
t, and yet Q does not vanish on all of Fm

h . This property allows us to argue that such a Q does not vanish on
the covering curve. One may wonder whether or not larger sets T can be handled in a similar way; here we
give evidence that they cannot.

We use the existence of large finite-field Kakeya sets, which are sets containing a line in every direction.
From, e.g., [SS08], we have

Theorem 5.1. For every finite field F with h elements and every m ≥ 2, there exists a Kakeya set K ⊆ Fm

of size at least hm/2m−1.

Kakeya sets represent a potential barrier in the following sense:

Theorem 5.2. Let K ⊆ Fm
h be a Kakeya set. Suppose Q ∈ Fh[W0, . . . ,Wm−1] is homogeneous of degree

D ≤ ht− 1 and vanishes on K with multiplicity t. Then Q vanishes on Fm
h .

Proof. By the definition of a Kakeya set, for every b ∈ Fm
h , there exists a ∈ Fm

h for which {a + bx : x ∈
Fh} ⊆ K. For such a pair (a, b), we find that Q(a+ bX) is a univariate polynomial of degree D < ht that
vanishes with multiplicity t on Fh; thus it is the zero polynomial. The coefficient on XD in Q(a + bX) is
Q(b), and thus Q(b) = 0. As b was arbitrary in Fm

h , we conclude that Q vanishes on Fm
h as claimed.

Thus, in the context of GUV-style condenser constructions and proofs, sets T of size larger than about
hm/2m (needed for entropy rates larger than 1 − 1/O(log n)) seem to be qualitatively different, requiring
new ideas.
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